

GöHPCoffee

HPC/GPU resources and hosting/housing options

Christian Köhler christian.koehler@gwdg.de

2. Oktober 2024

hpc@gwdg.de

HPC Systems hosted in Göttingen

Applications

Getting Access

Sharing/Hosting/Housing

HPC Systems hosted in Göttingen

HPC landscape in Germany

T0: Europe, T1/2: Germany, T3: local

EuroHPC

Gauss Centre for Supercomputing

NHR

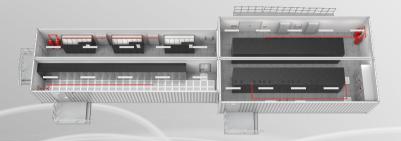
GWDG

NHR-NORD@GOTTINGEN

"Emmy", "Grete"

Scientific Compute Cluster

Local systems of universites/research institution


HPC systems operated by GWDG

- Scientific Compute Cluster (SCC)
 - Replacement Procurement for the Delta cluster
 (d* nodes, Faßberg, from 2016) from NEC is part of Emmy P3 at RZGö
 - Installation in the new data center
 - Continued operation of the Atos cluster (a* nodes, MDC, from 2020)
- DLR system "CARO"
 - Cooperation between GWDG, University of Göttingen and German Aerospace Center (DLR)
 - System delivered and installed by NEC
 - in operation since 2022
 - GWDG: Installation, Operation and Consulting
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN)
 - vendor SVA/DELL, technically integrated with SCC
- NHR (formerly HLRN-IV) Atos system "Emmy" + MEGWARE GPU expansion "Grete"

GWDG

Modular Data Center (MDC)

- Left section: air-cooled systems (max 19 Racks)
 "Emmy" phase 1, GWDG SCC GPU nodes, storage
- Right section: hot water-cooled systems (max 14 racks)
 "Emmy" phase 2, GWDG SCC CPU compute nodes

NHR System "Emmy"

- Phase 1 (2018) → EOL as of 2024
 - 448 standard nodes (2 Xeon Gold 6148, 2x20 CPU-Cores, 192 GB memory)
 - High Mem nodes: 16x 768 GB
- Phase 2 (2020)
 - 1004 standard nodes (2 Xeon Platinum 9242, 2x48 CPU cores, 384 GB memory)
 - High Mem nodes: 16x 768 GB, 2x 1,5 TB
 - 3 GPU nodes (2 Xeon Gold 6148, 2x20 CPU cores, 768
 GB memory, 4x NVIDIA V100)
- Since 2021 operated for the NHR alliance
- Phase 3 (2023) installed in RZGö

"Emmy" P2, SCC: Intel Xeon Cascade Lake AP HPC node

Source: GWDG

Göttinger Rechenzentrum (RZGö)

- Hosting various HPC systems
 - "Grete", the GPU expansion for "Emmy"
 - "CARO" for the German Aerospace Center (DLR)
 - Max Planck Society (MPG) HPC systems (housing)
 - NHR+SCC CPU+GPU expansion 2023 (Emmy P3)
- IT staff+systems from GWDG, Uni Göttingen, UMG, MPG
- Expanded office secion, new CS lecture hall

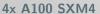
GPU expansion "Grete"

- 34 nodes with Direct Liquid Cooling (DLC), each with
 - 2x AMD Epyc 7513 CPU (32 "Milan" cores, Zen 3 microarch.)
 - 512 GB memory (DDR4, 3200 MHz)
 - 2x 1 TB NVMe SSD
 - 4x NVIDIA A100 GPU (SXM4, 40 GB HBM2 memory)
 - 2x Mellanox InfiniBand HCA (HDR)
- + 22x REACT, 35x AI service center, 9x hosting, 3x SCC
- GPU Add-on 2023: 5 nodes, each with
 - 2x Intel Xeon P. 8468 (48 "Sapphire Rapids "cores)
 - 512 GB memory (DDR4, 3200 MHz)
 - 2x 1,92 TB NVMe SSD

Köhler

- 4x NVIDIA H100 GPU (SXM5, 94 GB HBM2 memory)
- 2x Mellanox InfiniBand HCA (HDR)
- + 11x Al service center

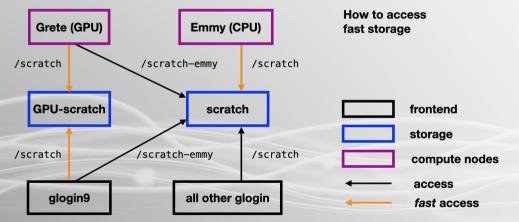
GPU System "Grete"


Specifications of the GPUs (A100 example)

- 136x A100 Tensor Core GPU (Ampere architecture)
 - GA100 GPU: 7 GPU processing clusters (GPC, share L2 cache) à \leq 16 SMX
 - GPC can be split between users as Compute Instance→MIG
 - 108 SMX \rightarrow 6912 CUDA cores, 432 Tensor cores
 - 19,49/9,746/155,92 TFLOPs (SP/DP/Tensor)
 - 40 GB VRAM (HBM2e)
 - SXM4 form factor, 4 GPUs on "Redstone" baseboard
 - NVLINK full mesh, 800 GB/s bidirectional bandwidth per GPU
- GPUS can be requested individually in the batch system (Slurm)

GPU example: NVIDIA "Redstone" Baseboard

Köhler



Source: NVIDIA

GPU System "Grete"

Frontend Nodes

HPC Systems hosted in Göttingen

Most recent installations NHR

- NEC CPU cluster Emmy Phase 3 (replacing Emmy P1)
 - each node: 2x Intel "Sapphire Rapids" 8468 (48c)
 - 164x 256 GB, 164x 512 GB, 12x 1 TB, 2x 2 TB
 - Poweruser phase concluded
- NEC CPU Add-on 2023
 - 20x 512 GB. 16x 1 TB
 - 4 nodes per 2U chassis, each with
 - 2x Intel Sapphire Rapids 8468 (48c) CPU
 - 1x Cornelis Omni-path (100 Gbit/s) HCA
- SCC partition: 44x 512 GB, 4x 1 TB, 1x 2 TB

Scientific Compute Cluster Replacement procurement 2020 - Overview

- 96 standard nodes (2 Xeon Platinum 9242, 2x48 CPU cores, 384 GB memory)
 - \rightarrow cf. "Emmy" Phase 2 standard nodes
- 2 GPU nodes with 8 Tesla V100/32
 - →2 Xeon Gold 6252, 2x24 CPU cores, 384 GB memory
- 12 GPU nodes with 4 Quadro RTX5000
 - →2 Xeon Gold 6242, 2x16 CPU cores, 192 GB memory
- 100 GBit/s Intel Omni-Path interconnect
- Storage: 2,15 PB /scratch
 - \rightarrow BeeGFS, with a 100 TB SSD part

Scientific Compute Cluster

Replacement procurement 2020 - GPUs

- 48x Quadro RTX5000 (Turing architecture)
 - TU104 GPU: 48 SMX → 3072 CUDA cores, 384 Tensor cores
 - 11,2/89,2 TFLOPs (SP/Tensor)
 - 16 GB VRAM (GDDR6)
 - + 48 RT cores for raytracing acceleration=handing off lots of intersection tests from CUDA cores/shaders)
- 16x Tesla V100/32 (PCIe version) (Volta architecture)
 - GV100 GPU: 80 SMX ightarrow 5120 CUDA cores, 640 Tensor cores
 - 14/7/112 TFLOPs (SP/DP/Tensor)
 - 32 GB VRAM (HBM2)
- GPUS can be requested individually in the batch system (Slurm)

GPU example: NVIDIA Quadro RTX 5000

Source: NVIDIA

Future Technology Platform

GWDG Experimental applications on an alternative microarchitecture (ARM) and security/storage offloading (DPUs)

- First system: NVIDIA ARM DevKits
 - 1x Ampere Altra Q80-30 (80 cores, ARM)
 - 512 GB memory (DDR4, 3200 MHz)
 - 2x NVIDIA A100 GPU (SXM4, 40 GB HBM2 memory)
 - 2x NVIDIA BlueField-2 E-Series DPU (200 GbE/HDR, 16 GB memory)
- New procurements (via Al service center)
 - delivered, now network, configuration, OS and SW setup
 - GraphCore
 - Intel Habana Gaudi 2
 - NVIDIA Grace Hopper (ARM+H100)
 - Esperanto.Al (RISC-V)
 - SpiNNcloud (ARM) → ETA December, test system (loan TUD installed) https://info.gwdg.de/news/

gwdg-wird-mit-neuromorpher-spinnaker-hardware-ausgestattet/

Applications

Typical Usage Scenarios

Al Research

- Labs with many students doing small-scale experiments
- Mid-scale development/experiments by researchers or students
- Large-scale/scalable execution of developed pipelines

HPC Research

- Small-scale / single-node testing of an application
- Labs with many students learning to use HPC
- Scalable/Multi-node execution of existing/developed application

GPU Usage Modes

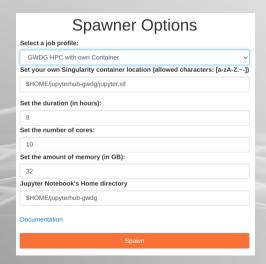
Asynchronous batch jobs

- submitted jobs are executed later
- depending on load, individual priority (cf. FairShare)
- once running resources are granted exclusively
- most resources, main form of GPU usage

Interactive batch jobs

- resources are requested in batch mode
- live usage once jobs starts
- exclusive usage, potentially long waiting time
 We partition GPUs for maximum sharing (into up to 7 "devices")

Shared resources


- partition with no exlusive usage (overprovisioning)
- no waiting time, but no guaranteed performance
- for testing and small-scale experiments
- $lue{}$ usage via Jupyter HPC ightarrow

18

Data Analytics Applications Jupyter on SCC

- jupyter-hpc.gwdg.de spawns Jupyter on HPC
- supports IPython Parallel
- Users can choose resources, start individual Singularity Container
- Support for Jupyter on (shared) GPU nodes

Data Analytics Applications

Apache Spark / Tensorflow

- Apache Spark
 - Spark clusters can be set up automatically
 - interaktive sessions (e.g. Scala)
 - Monitor cluster status via web interface
- TensorFlow
 - Integration in users' Python environment
 - Using GPU nodes with CUDA possbile

Overview & Documentation of HPC applications: https://docs.hpc.gwdg.de

Module system

21

- Application domains & software
 - Quantum chemistry, Molecular dynamics
 - Bioinformatics, Genomics, Evolutionary Biology
 - Astrophysics, Cosmology, Numerical Fluid Dynamics
 - Numerical Software: MATLAB, Maple, Mathematica
 - Machine Learning
 - Medical Imaging (e.g. MRI)
 - Data Analytics: Python, R, Spark, ...
- $lue{}$ Module system Lmod ightarrow software catalogue module avail

Getting Access

Usage Scenarios Tier 2/3

- Scientific Compute Cluster (SCC) (Tier 3) for UGOE/MPG
 - Covering basic usage, Throughput-Computing
 - Consulting for the transition to T2, Scaling tests
 - Requirements
 - GWDG Full Account (Nutzer UGOE/MPG)
 - Thesis projects: Apply for an account via supervisor's institute
 - Courses: temporarily usable guest accounts
- NHR systems "Emmy"/"Grete" (Tier 2)
 for Universities and Research Institutions in the NHR alliance
 - Proposal preparation, Software setup
 - Scientific review of compute time projects

Getting access to the HPC systems

- Scientific Compute Cluster (SCC)
 - Account activation: request via hpc@gwdg.de
 - Job prioritization via FairShare
- NHR systems "Emmy"/"Grete"
 - Apply for a "Starter" project https://jards.nhr-verein.de/
 - Starting from 300.000 Coreh per quarter
 - Project application for further compute time "Normal"/"Large"
 - Review by scientific board (+techn. review by HPC sites)
 - Scientific review can be omitted, if project has been granted by BMBF/DFG/EU/GCS/NHR/... (Whitelisting) and not "Large"
- Get login account, add project members via https://hpcproject.gwdg.de

Sharing/Hosting/Housing

Integration of own systems

- Housing (administration by users) includes:
 - Rack space
 - Power
 - Cooling
 - Networking connectivity
- In addition, with **Hosting** GWDG takes care of:
 - Provisioning Node images
 - optional integration with the batch system (FairShare compensation or exclusive usage)
- How to include own procurements
 - Stating your requirements, initial consulting
 - Deciding on housing/hosting, batch system integration
 - GWDG: Procurement, order, preparing infrastructure, installation
 - further coordination: granting user access, project directories

Further Resources

Where to get more information?

- HPC documentatin https://docs.hpc.gwdg.de shows you information about
 - Basic access
 - Hardware overview
 - How to submit jobs
 - Advice on most common applications
- Support mail address: hpc@gwdg.de / nhr-support@gwdg.de / kisski-support@gwdg.de
- General GWDG support address: support@gwdg.de
- Rocket.Chat channel #hpc-users (N.B.: Matrix)

Courses

- We offer courses on SCC usage, programming with MPI, OpenMP, CUDA,
 Python, Research Data Management and more
 - → GWDG Academy https://www.gwdg.de/academy
- HPC intro course "Using the Scientific Compute Cluster"
 - usually online via BigBlueButton

All presentations in the GöHPCoffee series:

https://docs.gwdg.de/doku.php?id=en:services:application_services:

high_performance_computing:hpc_coffee