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Introduction

Training costs increases with model sizes

Memory signature of optimization algorithms can help in
computational performance characterization of model training

Allows employment of suitable performance optimization techniques
to reduce training costs

Eliah Windolph and Jack Ogaja 2 / 16



Model

All trials were run with the same model

The model we used is a transformer for question answering called
DistilBertForQuestionAnswering

It has around 66.4 M trainable parameters

Has a size of around 265 Mb
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Adam

Short for Adaptive Moment Estimation

Combines the advantages of AdaGrad (adaptive gradient algorithm)
and RMSProp (root mean squared propagation)

Adapts the learning rate for each parameter regarding to its previous
results
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SGD

Short for stochastic gradient descent

Can be used with momentum (disabled in our runs)

Can be used with weight decay (disabled in our runs)

Updates the parameters based on the gradient and learning rate
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Overview of Optimizers
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Figure: Peak memory consumption vs average training time
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Mixed Precision

Not all variables need to be stored in 32bit (faster and less memory
usage)

Gradients are calculated in 16bits as well but will get converted back
for the optimization step

The model is in both 16-bit and 32-bit Precision on the GPU (around
1.5 times the original memory)

Depending on model and batch size we can either increase or
decrease the memory consumption
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Mixed Precision - Adam

Figure: Training for 2 epochs (Top: Base; Bottom: Mixed precision)
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Mixed Precision - SGD

Figure: Training for 2 epochs (Top: Base; Bottom: Mixed precision)
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Gradient Checkpointing

For the backward pass, all activations from the forward pass are saved

This creates a huge memory overhead

You could recalculate them but this would create a huge calculation
overhead

Gradient Checkpointing takes the middle road by saving only parts of
the activations

The other needed activations will get recalculated from the last
checkpoint
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Gradient Checkpointing - Adam

Figure: Training for 2 epochs (Top: Base; Bottom: Check-pointing)

Eliah Windolph and Jack Ogaja 11 / 16



Gradient Checkpointing - SGD

Figure: Training for 2 epochs (Top: Base; Bottom: Check-pointing)
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Batch Size

Since we need to save all the activations for all inputs and calculate
the gradients for all batch elements we can decrease the memory
usage by decreasing the batch size

Unless a optimizer saves additional parameters for each batch element
the memory savings are optimizer independent and therefore not that
important in our investigation
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Gradient Accumulation

If we want a higher batch size but we are limited by the memory one
can use gradient accumulation

Instead of running all the elements at once we have multiple forward
and backward passes

We accumulate the gradients before performing the optimization step

Again should be optimizer independent
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Memory Optimization Techniques

Figure: Memory consumption in MB
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Summary

SGD has relatively lower average training time per epoch with lower
peak memory consumption

Adam and its derivatives (momentum-based) consume relatively
higher memory
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Motivation

Applying Machine Learning can be challenging especially for
non-experts. Automation of model building and training (AutoML)
can increase efficiency and productivity while applying machine
learning

AutoML can also be exploited for computational performance
engineering and analysis
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Introduction

We show how to use Neural Network Intelligence (NNI) to automate
Hyperparameter Optimization (HPO) in Grete GPUs. NNI requires 3 files:

The python code which includes your model and trainings loop

A config file which will tell NNI how to run your code

A search space, which includes the parameters which you try to
optimize
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Python File (PyTorch)
You only have to make some small adjustment to any existing PyTorch
script.
NNI adds 3 important functions:

1 nni.get_next_parameter ()

2 # This will be used to get the current

parameters from the defined search space. It returns

a dictionary.

3

1 nni.report_intermediate_result ()

2 # This will be used to report the

intermediate results which will show in the WebUI

3

1 nni.report_final_result ()

2 # This will report the final result which

will show in the WebUI as well

3
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Python File (PyTorch)

For example, the modified lines could look like this:

def main():
args = nni.get next parameter()
optimizer = torch.optim.SGD(model.parameters, lr=args[’lr’])
...
train(...)
nni.report final result(get accuracy(model, data))

def test(...):
...
nni.report intermediate result(get accuracy(model, data))
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The config file

This file contains the config which NNI will use to run your code. The
most important configs are listed below. For more info look here.

searchSpaceFile: Path to your search space

trialCommand: The command which will run the python code

trainingService: Switch between local, remote or more. In the cluster
you will have to use local

tuner: The tuner will choice which parameters will get tested next
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The config file

An example might look like this:

searchSpaceFile: search space.json
trialCommand: python3 mnist tensorboard.py
trialConcurrency: 1
maxExperimentDuration: 20m
tuner:
name: TPE
classArgs:
optimize mode: maximize

trainingService:
platform: local
useActiveGpu: true
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Search Space

The search space tells NNI which hyperparameters you are trying to
optimizer over. The file is a json file with the following structure:

{
”name”: { type”: type, ” value”: options}
...

},

The type tells NNI how to interpret the values. It could be a choice of a
list or a random integer between two values. Depending on which tuner
you use different types are allowed. For more info check here.
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Search Space

An example from NNI for a mnist model looks like this:

{
”batch size”: {” type”:”choice”, ” value”: [16, 32, 64, 128]},
”hidden size”:{” type”:”choice”,” value”:[128, 256, 512, 1024]},
”lr”:{” type”:”choice”,” value”:[0.0001, 0.001, 0.01, 0.1]},
”momentum”:{” type”:”uniform”,” value”:[0, 1]}

}
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PyTorch Profiler

Additionally you can run your PyTorch code with the PyTorch profiler and
tensorboard. The tensorboard plugin will make it easier to examine the
results since it shows them in a nice webui. In order to add the profiler you
have just have to create the profiler object:

prof = torch.profiler.profile(
on trace ready=torch.profiler.tensorboard trace handler(

os.path.join(os.environ[’NNI OUTPUT DIR’] ,’tensorboard’)),
profile memory=True,
with stack=True)

For more information and parameters check here.
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PyTorch Profiler

You then start the profiler with prof.start(). This will often be placed
directly before the traninigs loop. After each epoch you will add the
profiler step with prof.step(), before eventually closing the profiler with
prof.stop().
If we know want to take a look at the profiler we will need to install the
profiler plugin by running pip install torch tb profiler in our python
environment.
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PyTorch Profiler

We then navigate to our nni-experiments folder and start tensorboard via
the command:
tensorboard --logdir ”<your experiment id>” --bind all
--port <your port>
Make sure to port forward this port to your local machine. You can then
open your browser and open the webui of tensorboard and go to the
pytorch profiler tab to see all the results.

Depending on your total amount of runs this make take a while!
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Tensorboard WebUI

Figure: Hyperparameter values: Top 100 %
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Tensorboard WebUI

Figure: Hyperparameter values: Top 20 %
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Tensorboard WebUI

Figure: Hyperparameter values: Top 1 %
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Tensorboard WebUI

Figure: Intermediate Results: Trial 1
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Tensorboard WebUI

Figure: Intermediate Results: Trial 2
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