
CMake

Dr. Freja Nordsiek

GWDG AG-C

2024.06.26 GöHPC Coffee

)

Introduction The Problem Build Systems CMake

Table of contents

1 Introduction

2 The Problem

3 Build Systems

4 CMake

Dr. Freja Nordsiek GöHPC Coffee 2 / 33

Introduction The Problem Build Systems CMake

What is CMake

� https://cmake.org

� Build system

I Find things on the system
I Configure build
I Setup build
I Do build
I Install, package, etc.

� Reasonably platform independent

� Can be used with any language, but has special support for specific ones

Dr. Freja Nordsiek GöHPC Coffee 3 / 33

https://cmake.org

Introduction The Problem Build Systems CMake

Starting Tiny

� Trivial C program
1 int main(void)
2 {
3 return 0;
4 }

� Trivial compilation
gcc -std=c11 -o trivial trivial.c

Dr. Freja Nordsiek GöHPC Coffee 4 / 33

Introduction The Problem Build Systems CMake

Less Tiny

� Simple C program
1 #include <stdio.h>
2
3 #include "zlib.h"
4
5 int main(void)
6 {
7 printf("Zlib version: %s\n", zlibVersion());
8 }

� Simple compilation
gcc -std=c11 -o simple simple.c -lz

Dr. Freja Nordsiek GöHPC Coffee 5 / 33

Introduction The Problem Build Systems CMake

Changing The Less Tiny

� A specific path for zlib
mkdir -p myzlib/include myzlib/lib
ln -f -s /usr/lib/libz.so myzlib/lib/libz.so
ln -f -s /usr/include/zlib.h myzlib/include/zlib.h
gcc -L myzlib/lib -I myzlib/include -std=c11 -o simple simple.c -lz

� Changing compiler to clang
clang -std=c11 -o simple simple.c -lz

� So far, this isn’t too bad.

Dr. Freja Nordsiek GöHPC Coffee 6 / 33

Introduction The Problem Build Systems CMake

Two Code Files And A Header

small.h
1 #ifndef _SMALL_H

2 #define _SMALL_H

3 void printZlibVersion(void);

4 #endif

printv.c
1 #include <stdio.h>

2 #include "zlib.h"

3 #include "small.h"

4 void printZlibVersion()

5 {

6 printf("Zlib version: %s\n", zlibVersion());

7 }

main.c
1 #include "small.h"

2 int main()

3 {

4 printZlibVersion();

5 }

Compile All At Once
gcc -std=c11 -o small main.c printv.c -lz

Compile In Stages
gcc -std=c11 -c main.c
gcc -std=c11 -c printv.c
gcc -std=c11 -o small main.o printv.o -lz

Dr. Freja Nordsiek GöHPC Coffee 7 / 33

Introduction The Problem Build Systems CMake

Making Using zlib Optional

small.h
1 #ifndef _SMALL_H

2 #define _SMALL_H

3 void printZlibVersion(void);

4 #endif

printv.c
1 #include <stdio.h>

2 #include "zlib.h"

3 #include "small.h"

4 void printZlibVersion() {

5 #ifdef USE_ZLIB

6 printf("Zlib version: %s\n", zlibVersion());

7 #else

8 printf("NOT COMPILED WITH ZLIB!!!\n");

9 #endif

10 }

main.c
1 #include "small.h"

2 int main() {

3 printZlibVersion();

4 }

Compile Without zlib
gcc -std=c11 -o small_without main.c printv.c

Compile With zlib
gcc -std=c11 -DUSE_ZLIB -o small_with main.c printv.c -lz

Dr. Freja Nordsiek GöHPC Coffee 8 / 33

Introduction The Problem Build Systems CMake

Scaling Issues

� Gets more and more difficult as the following increase

I Number of files
I Number of dependencies
I Number of configuration options
I Complexity of source filesystem hierarchy

� We don’t want to compile with a single command (usually)

I Use object files to speed up recompilation
I What if different files need different options

� Want to make life easy if something changes

I Only things that depend on changed file/s should be rebuilt
I Remembering every step to compile is

• tedius
• error prone

Dr. Freja Nordsiek GöHPC Coffee 9 / 33

Introduction The Problem Build Systems CMake

Enter the Makefile

Makefile
1 CC = gcc
2 CFLAGS = -std=c11 -DUSE_ZLIB
3 LDFLAGS = -lz
4
5
6 TARGETS=small
7 OBJECTS=main.o printv.o
8
9 all: $(TARGETS)

10
11 .PHONY: clean
12 clean:
13 $(RM) $(TARGETS) $(OBJECTS)
14
15 small: $(OBJECTS)
16 $(CC) $(CFLAGS) -o $@ $^ $(LDFLAGS)
17
18 .SUFFIXES: .c .o
19
20 %.o: %.c small.h
21 $(CC) $(CFLAGS) -c -o $@ $<

Build
make

gcc -std=c11 -DUSE_ZLIB -c -o main.o main.c
gcc -std=c11 -DUSE_ZLIB -c -o printv.o printv.c
gcc -std=c11 -DUSE_ZLIB -o small main.o printv.o -lz

Re-Build
touch main.c
make

gcc -std=c11 -DUSE_ZLIB -c -o main.o main.c
gcc -std=c11 -DUSE_ZLIB -o small main.o printv.o -lz

Dr. Freja Nordsiek GöHPC Coffee 10 / 33

Introduction The Problem Build Systems CMake

In The Old Days (And Sadly Sometimes Today)

� A software package would come with only a Makefile

� User would need to edit variable definitions at the top

� User would need to know

I The flags their compiler needs
I Know which libraries and headers are on their system
I Where each library, header, etc. is found on their system
I Each define needed to indicate their specific platform

� Try building, re-edit, re-build, . . . until success (if ever)

� Hand crafted Makefile vary in quality

� And good luck in most hand crafted ones with

I cross-compilation
I out-of-tree builds

Dr. Freja Nordsiek GöHPC Coffee 11 / 33

Introduction The Problem Build Systems CMake

In The Less Olden Days

� Packages came with a script/program that generated the Makefile from a
template based on the system and user supplied options

� A.K.A. the ./configure script

� Absolute pain to write by hand

I could be thousands of lines of portable shell (no bash-isms)
I required arcane knowledge to be truly portable across unix-likes
I brittle

Dr. Freja Nordsiek GöHPC Coffee 12 / 33

Introduction The Problem Build Systems CMake

Enter the Modern Build Systems

� Provide a high-level DSL to software developers for

I Flags to enable/disable features
I Check for dependencies
I Configure/generate/template source code
I What to build
I How to build
I Where to install

� Build system handles the hard parts

I Consistent API for users
I Use proper low level tools for the platform
I Handle compiler, platform, hardware differences
I How to look for dependencies on each platform

Dr. Freja Nordsiek GöHPC Coffee 13 / 33

Introduction The Problem Build Systems CMake

Some Common Build Systems

Build System Platforms Low-Level

Autotools unix-like configure script and make
Meson unix-like, Windows itself and ninja
Bazel unix-like, Windows itself
CMake unix-like, Windows itself and make/ninja/..

Dr. Freja Nordsiek GöHPC Coffee 14 / 33

Introduction The Problem Build Systems CMake

Why Choose CMake?

Strengths

� Very backwards compatible with its own DSL

� Turing complete for when it is needed

� Just need to know its DSL

� Very good at C++ including with Qt

� Supports unix-like (including Linux) and Windows

CMake Weaknesses

� DSL is weak for programming logic (not as bad as shell)

� Not purely declarative

� Can’t extend built in functionality to more languages

I Must define custom targets and commands the harder way
Dr. Freja Nordsiek GöHPC Coffee 15 / 33

Introduction The Problem Build Systems CMake

Basic CMake

CMakeLists.txt
1 # Setup

2 cmake_minimum_required(VERSION 3.23)

3 project(

4 small

5 VERSION 1.0

6 LANGUAGES C

7)

8
9 # Option for user to decide what to build with

10 option(USE_ZLIB "Build with zlib support" OFF)

11 if(USE_ZLIB)

12 find_package(ZLIB REQUIRED)

13 endif()

14
15 # Program to build.

16 add_executable(small main.c printv.c small.h)

17 target_compile_features(small PRIVATE c_std_11)

18
19 # Add zlib support if it was found

20 if(ZLIB_FOUND)

21 target_link_libraries(small PRIVATE ZLIB::ZLIB)

22 target_compile_definitions(small PRIVATE USE_ZLIB)

23 endif()

24
25 # Install the program

26 install(TARGETS small)

Build and Install
rm -rf build
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=$(pwd)/inst_pref -DUSE_ZLIB=ON ../
cmake --build .
cmake --install .

-- The C compiler identification is GNU 13.3.1
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: /usr/bin/cc - skipped
-- Detecting C compile features
-- Detecting C compile features - done
-- Found ZLIB: /usr/lib64/libz.so (found version "1.2.13")
-- Configuring done (0.2s)
-- Generating done (0.0s)
-- Build files have been written to: /home/fnordsi1/projects/hpc_coffee/2024_06_26_cmake/code/smallopt/build
[33%] Building C object CMakeFiles/small.dir/main.c.o
[66%] Building C object CMakeFiles/small.dir/printv.c.o
[100%] Linking C executable small
[100%] Built target small
-- Install configuration: ""
-- Installing: /home/fnordsi1/projects/hpc_coffee/2024_06_26_cmake/code/smallopt/build/inst_pref/bin/small

Run
./small
inst_pref/bin/small

Zlib version: 1.2.13
Zlib version: 1.2.13

Dr. Freja Nordsiek GöHPC Coffee 16 / 33

Introduction The Problem Build Systems CMake

Blow by Blow – Required CMake

cmake_minimum_required(VERSION 3.23)

� Sets the minimum required CMake version

I 3.23 is when installing header files got easier
I Definitely don’t use anything before 3.0 for anything new

� Also sets language compatibility options in newer CMake

I This is why it is so backwards compatible
I The individual options (called "policies") can be set individually

Dr. Freja Nordsiek GöHPC Coffee 17 / 33

Introduction The Problem Build Systems CMake

Blow by Blow – Project

project(
small
VERSION 1.0
LANGUAGES C

)

� Must always define the project

� Set version

� Indicate which programming language/s if any are used

I Will look for the compilers
I Can actually set later with enable_language(<lang>)

Dr. Freja Nordsiek GöHPC Coffee 18 / 33

Introduction The Problem Build Systems CMake

Blow by Blow – User Controlled Option

Option for user to decide what to build with
option(USE_ZLIB "Build with zlib support" OFF)

� For flags that users can set when building

I e.g. use OpenMP

� Arguments are

I Option name
I Help string for users
I Default value

� Then the variable USE_ZLIB contains the set value

� User adjusts by cmake -DUSE_ZLIB=<value>

Dr. Freja Nordsiek GöHPC Coffee 19 / 33

Introduction The Problem Build Systems CMake

Blow by Blow – Conditional Logic and Looking for a Dependency

if(USE_ZLIB)
find_package(ZLIB REQUIRED)

endif()

� Can branch on the value of a variable (here an option)

� find_package finds any package with a module for finding it

I Many builtin modules
I Not hard to write simple ones
I Can make CMake build one for your package on installation so others don’t

have to write one

� Add the REQUIRED flag to indicate it must be present

� All should set <package>_FOUND

Dr. Freja Nordsiek GöHPC Coffee 20 / 33

Introduction The Problem Build Systems CMake

Blow by Blow – Define Program

Program to build.
add_executable(small main.c printv.c small.h)

� Defines a program to build followed by its source files

� Defines a Target with the same name as the executable

I Later commands operate on the target

� add_library does the same for libraries (more later)

Dr. Freja Nordsiek GöHPC Coffee 21 / 33

Introduction The Problem Build Systems CMake

Blow by Blow – Set The Language Standard

target_compile_features(small PRIVATE c_std_11)

� Specify the language standard to use for this target

� C11 in this case

� Works like many other target_* commands:

I The PRIVATE flag means the value to use for building
I A PUBLIC flag is the value to use for things depending on it

• For headers and linking
• Relevant for libraries, not programs

I Can have different PRIVATE and PUBLIC values

Dr. Freja Nordsiek GöHPC Coffee 22 / 33

Introduction The Problem Build Systems CMake

Blow by Blow – Add Dependency

Add zlib support if it was found
if(ZLIB_FOUND)

target_link_libraries(small PRIVATE ZLIB::ZLIB)
target_compile_definitions(small PRIVATE USE_ZLIB)

endif()

� find_package actually defines a Target for the found package

� Adding a target is a matter of specifying its name (often NAME::NAME)

� Easy to add the needed preprocessor definition

Dr. Freja Nordsiek GöHPC Coffee 23 / 33

Introduction The Problem Build Systems CMake

Blow by Blow – What to Install

Install the program
install(TARGETS small)

� Takes form install(<kind> <what>... [OPTIONS])

� For targets, automatically handles programs and libraries

I Need to use other options for public headers, etc.

� install(FILES <files> DESTINATION <dir> [OPTIONS])

Dr. Freja Nordsiek GöHPC Coffee 24 / 33

Introduction The Problem Build Systems CMake

Variables

� All variables in CMake are strings

� Other data types are just cleverly encoded strings

� String values specified similar to Bash

I FOO is the string "FOO" as long as it has no spaces
I "FOO" is the string "FOO"
I "${FOO}" expands the value of variable FOO
I Escape with the \ character

� But there are some differences with Bash

I Doesn’t use single quotes ever
I FOO BAR is the string "FOO;BAR" (a list in CMake)

� Set a variable with set(<name> <value>)

I Set the value in the parent function set(<name> <value> PARENT_SCOPE)

� Delete a variable with unset(<name>)

Dr. Freja Nordsiek GöHPC Coffee 25 / 33

Introduction The Problem Build Systems CMake

Booleans

True

� any non-zero number

� ON

� YES

� Y

� TRUE

False

� 0

� OFF

� NO

� N

� FALSE

� IGNORE

� NOTFOUND

� anything ending in -NOTFOUND

Dr. Freja Nordsiek GöHPC Coffee 26 / 33

Introduction The Problem Build Systems CMake

Lists

� One of the most common "types" in CMake

� Encoded as a semicolon separated string

� Outside of double quotes, a space separator implies a new element

� Examples:

Code Result Number of Elements

set(MYVAR a) "a" 1
set(MYVAR a b c) "a;b;c" 3
set(MYVAR "a b" c) "a b;c" 2
set(MYVAR "a\\;b" c) "a\;b;c" 2
set(MYVAR "a\;b" c) "a\;b;c" 2

Dr. Freja Nordsiek GöHPC Coffee 27 / 33

Introduction The Problem Build Systems CMake

Basic Logic
if(<cond>)

<commands>
elseif(<cond>)

<commands>
else()

<commands>
endif()

� else blocks are optional
� Many forms of conditions:

I <boolean>
I <varname> (evaluate variable contents as boolean)
I NOT <cond>
I <cond1> AND <cond2>
I <cond1> OR <cond2>
I <var_or_value1> LESS <var_or_value2>
I <var_or_value1> GREATER_EQUAL <var_or_value2>
I <var_or_value1> STREQUAL <var_or_value2>
I <var_or_value1> VERSION_LESS <var_or_value2>

Dr. Freja Nordsiek GöHPC Coffee 28 / 33

Introduction The Problem Build Systems CMake

Basic Loops

foreach(<loop_var> <over>)
<commands>

endforeach()

� Can loop over many different things

� Many forms of <over>

I RANGE <stop> – integers from 0 to <stop> inclusive
I RANGE <start> <stop> [<step>]
I IN <item1> ... – over the explicitly passed list
I IN LISTS <var1> ... – over the elements in the list variables

Dr. Freja Nordsiek GöHPC Coffee 29 / 33

Introduction The Problem Build Systems CMake

With A Library – New CMakeLists.txt
1 # Setup

2 cmake_minimum_required(VERSION 3.23)

3 project(

4 small

5 VERSION 1.0

6 LANGUAGES C

7)

8
9 # Option for user to decide what to build with

10 option(USE_ZLIB "Build with zlib support" OFF)

11 if(USE_ZLIB)

12 find_package(ZLIB REQUIRED)

13 endif()

14
15 # Library with printv.

16 add_library(small_lib SHARED printv.c)

17 target_sources(small_lib PUBLIC FILE_SET HEADERS FILES small.h)

18 target_compile_features(small_lib PRIVATE c_std_11)

19 if(ZLIB_FOUND)

20 target_link_libraries(small_lib PRIVATE ZLIB::ZLIB)

21 target_compile_definitions(small_lib PRIVATE USE_ZLIB)

22 endif()

23
24 # Program to build.

25 add_executable(small main.c)

26 target_compile_features(small PRIVATE c_std_11)

27 target_link_libraries(small PRIVATE small_lib)

28
29 # Install the library and program

30 install(TARGETS small_lib small FILE_SET HEADERS)

Dr. Freja Nordsiek GöHPC Coffee 30 / 33

Introduction The Problem Build Systems CMake

With A Library – Building and Running
rm -rf build
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=$(pwd)/inst_pref -DUSE_ZLIB=ON ../
cmake --build .
cmake --install .

-- The C compiler identification is GNU 13.3.1
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: /usr/bin/cc - skipped
-- Detecting C compile features
-- Detecting C compile features - done
-- Found ZLIB: /usr/lib64/libz.so (found version "1.2.13")
-- Configuring done (0.2s)
-- Generating done (0.0s)
-- Build files have been written to: /home/fnordsi1/projects/hpc_coffee/2024_06_26_cmake/code/withlib/build
[25%] Building C object CMakeFiles/small_lib.dir/printv.c.o
[50%] Linking C shared library libsmall_lib.so
[50%] Built target small_lib
[75%] Building C object CMakeFiles/small.dir/main.c.o
[100%] Linking C executable small
[100%] Built target small
-- Install configuration: ""
-- Installing: /home/fnordsi1/projects/hpc_coffee/2024_06_26_cmake/code/withlib/build/inst_pref/lib/libsmall_lib.so
-- Installing: /home/fnordsi1/projects/hpc_coffee/2024_06_26_cmake/code/withlib/build/inst_pref/include/small.h
-- Installing: /home/fnordsi1/projects/hpc_coffee/2024_06_26_cmake/code/withlib/build/inst_pref/bin/small
-- Set runtime path of "/home/fnordsi1/projects/hpc_coffee/2024_06_26_cmake/code/withlib/build/inst_pref/bin/small" to ""

Dr. Freja Nordsiek GöHPC Coffee 31 / 33

Introduction The Problem Build Systems CMake

Blow by Blow – Library

add_library(small_lib SHARED printv.c)
target_sources(small_lib PUBLIC FILE_SET HEADERS FILES small.h)
target_compile_features(small_lib PRIVATE c_std_11)

� Libraries are SHARED or STATIC

I advanced: there are others

� Must set public headers that will install in a weird way:
target_srouces(

<target>
PUBLIC
FILE_SET HEADERS
FILES <file1> ...

)

� Must add FILE_SET HEADERS to install:
install(TARGETS small_lib small FILE_SET HEADERS)

� As bad as setting headers it install was

I Had to be done manually before CMake 3.23

Dr. Freja Nordsiek GöHPC Coffee 32 / 33

Introduction The Problem Build Systems CMake

Where to Go From Here

� Just scratched the surface

I list and string manipulation with list() and string()
I sub-directories
I low-level finding
I writing functions and macros
I writing modules
I add_custom_target() and add_custom_command()
I templating files with configure_file()
I other languages
I testing (ctest) and packaging (cpack)

� See offical documentation: https://cmake.org/documentation

� See the last GöHPC Coffee on CMake:
https://pad.gwdg.de/iQkDoVwqT6qglbIMU6AxJQ

Dr. Freja Nordsiek GöHPC Coffee 33 / 33

https://cmake.org/documentation
https://pad.gwdg.de/iQkDoVwqT6qglbIMU6AxJQ

	Introduction
	The Problem
	Build Systems
	CMake

