Data Leakage in ML-based Projects Kapoor & Narayanan (2022): "Leakage and Reproducibility Crisis in ML-based Science"

Dorothea Sommer | GöHPCoffee | 31.08.2022

Data Leakage Using evaluation information during training

- Kapoor & Narayanan (2022) meta-review: 329 papers identified across many domains (medicine, social science, ...)
- Leads to **overoptimistic** estimate of the employed model

Empirical Results

		à	ser ;	Der .	S,	<u>ر کې ا</u>	<u>ر کې ا</u>	Ŵ,	S.	S,	<u>`</u> ?``	$\tilde{\mathcal{X}}$	QUE.	્જે	6° , 28°
Field	Paper	÷111	- And	×	2× 4	× 4	× 4	× 4	1 A	\$	× 4	کھی قر	1. D.g	2 4°	Statt
Medicine	Bouwmeester et al. (2012)	71	27	0									0		
Neuroimaging	Whelan & Garavan (2014)	-	14	0		0									
Autism Diagnostics	Bone et al. (2015)	-	3				0				0		0	0	0
Bioinformatics	Blagus & Lusa (2015)	_	6		0										
Nutrition Research	Ivanescu et al. (2016)	-	4	0									0	0	
Software Eng.	Tu et al. (2018)	58	11						0			0	0		0
Toxicology	Alves et al. (2019)	_	1				0					0	0		
Satellite Imaging	Nalepa et al. (2019)	17	17							0			0		0
Tractography	Poulin et al. (2019)	4	2	0								0	0	0	0
Clinical Epidem.	Christodoulou et al. (2019)	71	48			0							0		
Brain-computer Int.	Nakanishi et al. (2020)	_	1	0											0
Histopathology	Oner et al. (2020)	-	1							0					
Neuropsychiatry	Poldrack et al. (2020)	100	53	0	0								0	0	
Medicine	Vandewiele et al. (2021)	24	21			0				0	0	0	0		0
Radiology	Roberts et al. (2021)	62	62	0			0				0	0			0
IT Operations	Lyu et al. (2021)	9	3						0						0
Medicine	Filho et al. (2021)	_	1					0							
Neuropsychiatry	Shim et al. (2021)	_	1			0						0			
Genomics	Barnett et al. (2022)	41	23			0							0		
Computer Security	Arp et al. (2022)	30	30	0	0	0		0		0	0		0	0	

Dorothea Sommer | GöHPCoffee | 31.08.2022

L1 No Clean Separation Between the training and the test set

L1.1 No test set

L1.3 Feature L1.2 Pre-processing on training and test set Selection on both

Think: Imputation (replacing missing values with what)?

L1.4 Duplicates

Think: How can we ensure no duplicates?

My recommendation: Use fdupe -r. for checking the content (not filenames!).

L2 Model uses illegimate features

Examples

- Feature as proxy for the outcome variable feature: use of anti-hypertensive drug, prediction: hypertension
- Sometimes it can be **hidden** (own experience from replicating paper) lacksquarenatural language processing:
 - cluster words of a tweet corpus into descriptive 200 words

Why is the feature in the model legitimate? Requires domain knowledge!

Dorothea Sommer | GöHPCoffee | 31.08.2022

• features: linguistic features (e.g, emoji usage, whether each word from 200 is present) • **prediction**: classify socioeconomic status of users (ground truth: job in profile)

L3 Test set not properly drawn From the distribution of scientific interest

L3.2 Nonindependence between test and train samples

block cross validation (Roberts, 2017)

Dependence structure	Para solu
Spatial	Spat (e.g. INLA
Temporal	Time mod (e.g.
Grouping	Mixe mod (e.g.
Hierarchical / Phylogenetic	Phyl mod (e.g.

Figure 1. Examples of dependence structures, parametric solutions to parameter estimation, and the associated blocking approaches for cross-validation to increase reliability of prediction error estimates.

Think: Why is this a problem?

Dorothea Sommer | GöHPCoffee | 31.08.2022

L3.3 Sampling bias in test distribution

spatial bias

sampling from one location, making claims about another

selection bias

ignoring borderline cases in autism diagnostic, so overoptimistic results

Solution Ideas: Model Sheet \$
Answer questions to prevent data leakage

L1 Clean train test separation.

Argue why test set does not interact with training set. | Duplicates.

L2 Check legitimacy for each feature.

Argue why each feature is legitimate. | Makes you think why you assume relation.

L3 Test set is drawn from distribution of scientific interest.

Is the distribution of scientific interest the same on which the model is tested on?

Dorothea Sommer | GöHPCoffee | 31.08.2022

Take-away **D**

- Use check-list to ensure that your data-processing goes right
 - Model info sheet for detecting and preventing data leakage: https://reproducible.cs.princeton.edu/model-info-sheet-template.docx (Kapoor & Narayanan, 2022)
 - Model card for clarifying details of training and usage contexts: https://arxiv.org/pdf/1810.03993.pdf (Mitchell, 2019)
- Thoughtfully inspect your data (Andrej Karpathy: spend hours inspecting).

Empirical Results Corrected ML results on civil war prediction

Paper	Muchlinski et al.	Colaresi and Mahmood	Wang	Kaufman et al.
Claim	Random Forests model drastically outperforms Logistic regression models	Random Forests models drastically outperform Logistic regression model	Adaboost and Gradient Boosted Trees (GBT) drastically outperform other models	Adaboost outperforms other models
Error	[L1.2] Pre-proc. on train-test (Incorrect imputation)	[L1.2] Pre-proc. on train-test (Incorrect reuse of an imputed dataset)	[L1.2] Pre-proc. on train-test. (Incorrect reuse of an imputed dataset) [L3.1] Temporal leakage (k-fold cross validation with temporal data)	[L2] Illegitimate features (Data leakage due to proxy variables) [L3.1] Temporal leakage (k-fold cross validation with temporal data)
Impact	Random Forests perform no better than Logistic Regression	Random Forests perform no better than Logistic Regression	Difference in AUC between Adaboost and Logistic Regression drops from 0.14 to 0.01	Adaboost no longer outperforms Logistic Regression. None of the models outperform a baseline model that predicts the outcome of the previous year
Discussion	Impact of the incorrect imputation is severe since 95% of the out-of-sample dataset is missing and is filled in using the incorrect imputation method	Re-use the dataset provided by Muchlinski et al., which uses an incorrect imputation method	Re-use the dataset provided by Muchlinski et al., which uses an incorrect imputation method	Use several proxy variables for the outcome as predictors (e.g., <i>colwars, cowwars, sdwars</i> , all proxies for civil war), leading to near perfect accuracy

Other Issues That are not data leakage

Computational Reproducibility **Data Quality**

	X	
X		

Available code? Available data?

How are missing values addressed?

Use of standard data sets

1.	?	1.	?
2.	?	2.	?
3.	?	3.	?

Does performance metric capture scientific problem of interest?

No standard modeling and evaluation procedures.