
High-BandwidthLinuxFile IO
withO_DIRECT

Dr. Freja Nordsiek

GWDG AG-C

June 7, 2023 GöHPC Coffee

)

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Table of contents

1 Overview

2 Performance

3 Improving Performance

4 Linux Low Level IO

5 O_DIRECT

Dr. Freja Nordsiek GöHPC Coffee 2 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Why

Why do IO?

� Give program data

� Get program results

� Move data to another device

IO Devices:

� terminal

� files

� direct disk access

� sockets

� various other pseudo-files

Dr. Freja Nordsiek GöHPC Coffee 3 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Why

Why do IO?

� Give program data

� Get program results

� Move data to another device

IO Devices:

� terminal

� files

� direct disk access

� sockets

� various other pseudo-files

Dr. Freja Nordsiek GöHPC Coffee 3 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Simple Examples Without Error Checking

Python

1 with open('foo.txt', 'rb') as fin:
2 data = fin.read()
3 with open('bar.txt', 'wb') as fout:
4 fout.write(data)

C with libc

1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 FILE * fin = fopen("foo.txt", "r");
6 FILE * fout = fopen("bar.txt", "w");
7
8 for (int c = fgetc(fin); c != EOF; c = fgetc(fin))
9 fputc(c, fout);

10
11 fclose(fin);
12 fclose(fout);
13 }

Bash

1 data=`cat foo.txt`
2 echo $data > bar.txt

C with POSIX

1 #include <fcntl.h>
2 #include <unistd.h>
3
4 int main(int argc, char *argv[])
5 {
6 int fin = open("foo.txt", O_RDONLY);
7 int fout = open("bar.txt", O_WRONLY | O_CREAT | O_TRUNC);
8
9 char c;

10 while (read(fin, &c, 1))
11 write(fout, &c, 1);
12
13 close(fin);
14 close(fout);
15 }

Dr. Freja Nordsiek GöHPC Coffee 4 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

How IO Is Done (non-memory-mapped)– User Side
user code

OSsyscall

Data Buffer

user code Language Library

Language IO

Data Buffer Data Bufferpossibly copied

OSsyscall

user code Language Library libc

Language IO

Data Buffer Data Bufferpossibly copied

libc IO

Data Bufferpossibly copied

OSsyscall

Note: functions can return earlier on the chain depending on buffering, size of
data, previous operations, etc.

Dr. Freja Nordsiek GöHPC Coffee 5 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

How IO Is Done (non-memory-mapped) – OS Side

OS

RAM File

Device IO Buffer w/o DMA or where DMA is not desired

Device IO Buffer w/ DMA

Buffer Given to Syscall

File-like Function

read or writen

Contents

data copied

Data Buffer

possibly copied

Aligned Data Buffer

possibly copied

Devicecopied to/from register

DeviceDMA copy

Note: depending on buffering/caching and previous operations, not every syscall
results in a read/write.

Dr. Freja Nordsiek GöHPC Coffee 6 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Where Problems Come From

Alignment for Devices with DMA on OS Side

� Data must be read/written in increments of N bytes

� Read/written data start/end addresses must be multiples of N bytes

Multiple IO Layers User Side

� 1 – 3+ layers

� worst: wrapper → library → language lib → libstdc++ → libc → syscall

� Time overhead of each layer

I Validate arguments
I Check errors
I . . .

� Each layer might copy data buffer one or more times

Dr. Freja Nordsiek GöHPC Coffee 7 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Where Problems Come From

Alignment for Devices with DMA on OS Side

� Data must be read/written in increments of N bytes

� Read/written data start/end addresses must be multiples of N bytes

Multiple IO Layers User Side

� 1 – 3+ layers

� worst: wrapper → library → language lib → libstdc++ → libc → syscall

� Time overhead of each layer

I Validate arguments
I Check errors
I . . .

� Each layer might copy data buffer one or more times

Dr. Freja Nordsiek GöHPC Coffee 7 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Limits

� Device latency

� Device bandwidth limits

� Logic and setup latency

I Each IO layer requires time to complete
I Logic for file-like functions
I Filesystem logic for disks
I Setting up transfers

� Memory bandwidth limits

I Data is read and/or written every copy
I Desktop/mobile CPUs have low bandwidth
I Server CPUs have more more bandwidth but many more cores
I Competing with other memory bandwidth intensive operations
I Crossing NUMA boundaries can reduce bandwidth limit

Dr. Freja Nordsiek GöHPC Coffee 8 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Limits

� Device latency

� Device bandwidth limits

� Logic and setup latency

I Each IO layer requires time to complete
I Logic for file-like functions
I Filesystem logic for disks
I Setting up transfers

� Memory bandwidth limits

I Data is read and/or written every copy
I Desktop/mobile CPUs have low bandwidth
I Server CPUs have more more bandwidth but many more cores
I Competing with other memory bandwidth intensive operations
I Crossing NUMA boundaries can reduce bandwidth limit

Dr. Freja Nordsiek GöHPC Coffee 8 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Limits

� Device latency

� Device bandwidth limits

� Logic and setup latency

I Each IO layer requires time to complete
I Logic for file-like functions
I Filesystem logic for disks
I Setting up transfers

� Memory bandwidth limits

I Data is read and/or written every copy
I Desktop/mobile CPUs have low bandwidth
I Server CPUs have more more bandwidth but many more cores
I Competing with other memory bandwidth intensive operations
I Crossing NUMA boundaries can reduce bandwidth limit

Dr. Freja Nordsiek GöHPC Coffee 8 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Performance Limit – Device

� Latency and bandwidth can be looked up or calculated

� Must consider full chain (e.g. network connections)

� Must consider which steps are a/synchronous

Dr. Freja Nordsiek GöHPC Coffee 9 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Performance Limit – IO Logic Latency

Must be measured (often a distribution) with data copying time subtracted.

limit =
〈n〉

〈tlatency〉

Where 〈n〉 is average number of bytes read/written each call and 〈tlatency〉 is the
average latency of each call.

Increasing 〈n〉 increases this limit.

Small reads and writes most likely to hit this limit.

Less layers can reduce 〈tlatency〉 depending on buffering (can make worse with
some configurations).

Dr. Freja Nordsiek GöHPC Coffee 10 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Performance Limit – Memory Bandwidth (ignoring NUMA)

Total memory bandwidth for Nchan with bandwidth Bmem,chan is

Bmem,tot = NchanBmem,chan

IO to/from the device requires 1 read/write plus 1 read and 1 write for each
buffer copy Ncopy. The memory bandwidth limit is then

limit =
Bmem,tot

1 + 2Ncopy

Reducing Ncopy improves limit.

Reducing number of layers is easiest way to reduce Ncopy.

Dr. Freja Nordsiek GöHPC Coffee 11 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

General Strategy for High Bandwidth

� Bigger reads/writes minimize impact of 〈tlatency〉

� Going to lower level IO to reduce layers

I Can reduce 〈tlatency〉
I Reduces Ncopy

� Aligning reads/writes to N bytes for DMA

I Only possible for lowest level IO (direct syscalls)
I O_DIRECT on Linux

• Ncopy = 0
• DMA does all work freeing core for other tasks while IO completes

Dr. Freja Nordsiek GöHPC Coffee 12 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

General Strategy for High Bandwidth

� Bigger reads/writes minimize impact of 〈tlatency〉
� Going to lower level IO to reduce layers

I Can reduce 〈tlatency〉
I Reduces Ncopy

� Aligning reads/writes to N bytes for DMA

I Only possible for lowest level IO (direct syscalls)
I O_DIRECT on Linux

• Ncopy = 0
• DMA does all work freeing core for other tasks while IO completes

Dr. Freja Nordsiek GöHPC Coffee 12 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

General Strategy for High Bandwidth

� Bigger reads/writes minimize impact of 〈tlatency〉
� Going to lower level IO to reduce layers

I Can reduce 〈tlatency〉
I Reduces Ncopy

� Aligning reads/writes to N bytes for DMA

I Only possible for lowest level IO (direct syscalls)
I O_DIRECT on Linux

• Ncopy = 0
• DMA does all work freeing core for other tasks while IO completes

Dr. Freja Nordsiek GöHPC Coffee 12 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

libc and Linux equivalents
libc calls Linux calls

#include <stdio.h> #include <fcntl.h>
#include <unistd.h>

FILE *fopen(char *filename, char *mode) int open(const char *pathname, int flags)
int fclose(FILE *f) int close(int fd)
int fflush(FILE *f) int fsync(int fd)
int fseek(FILE *f, long offset, int origin) off_t lseek(int fd, off_t offset, int whence)

off64_t lseek64(int fd, off64_t offset, int whence)
long ftell(FILE *f) off_t lseek(int fd, 0, SEEK_CUR)

off64_t lseek64(int fd, 0, SEEK_CUR)
size_t fread(void *buf, size_t size, size_t count, FILE *f) ssize_t read(int fd, void *buf, size_t count)
size_t fwrite(void *buf, size_t size, size_t count, FILE *f) ssize_t write(int fd, const void *buf, size_t count)

Linux file handles are int.

On Linux, the following are file handles

� sockets

� stdin, stdout, stderr

� pipes

Dr. Freja Nordsiek GöHPC Coffee 13 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Open File

int fd = open("foo.txt", FLAGS);
FLAGS are OR-ed together

Access FLAGS
read O_RDONLY

write O_WRONLY

read and write O_RDWR

Creation FLAGS
create if not exist O_CREATE

must create O_EXCL

truncate O_TRUNC

append O_APPEND

Synchronization FLAGS
fsync ever write O_SYNC

non-blocking O_NONBLOCK

Aligned IO FLAGS

aligned reads/writes only O_DIRECT

Dr. Freja Nordsiek GöHPC Coffee 14 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Open File

int fd = open("foo.txt", FLAGS);
FLAGS are OR-ed together

Access FLAGS
read O_RDONLY

write O_WRONLY

read and write O_RDWR

Creation FLAGS
create if not exist O_CREATE

must create O_EXCL

truncate O_TRUNC

append O_APPEND

Synchronization FLAGS
fsync ever write O_SYNC

non-blocking O_NONBLOCK

Aligned IO FLAGS

aligned reads/writes only O_DIRECT

Dr. Freja Nordsiek GöHPC Coffee 14 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Open File

int fd = open("foo.txt", FLAGS);
FLAGS are OR-ed together

Access FLAGS
read O_RDONLY

write O_WRONLY

read and write O_RDWR

Creation FLAGS
create if not exist O_CREATE

must create O_EXCL

truncate O_TRUNC

append O_APPEND

Synchronization FLAGS
fsync ever write O_SYNC

non-blocking O_NONBLOCK

Aligned IO FLAGS

aligned reads/writes only O_DIRECT

Dr. Freja Nordsiek GöHPC Coffee 14 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Open File

int fd = open("foo.txt", FLAGS);
FLAGS are OR-ed together

Access FLAGS
read O_RDONLY

write O_WRONLY

read and write O_RDWR

Creation FLAGS
create if not exist O_CREATE

must create O_EXCL

truncate O_TRUNC

append O_APPEND

Synchronization FLAGS
fsync ever write O_SYNC

non-blocking O_NONBLOCK

Aligned IO FLAGS

aligned reads/writes only O_DIRECT

Dr. Freja Nordsiek GöHPC Coffee 14 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Getting And Changing FLAGS

Get FLAGS
int flags = fcntl(fd, F_GETFL);

Change some FLAGS

int err = fcntl(fd, F_SETFL, FLAGS);

Dr. Freja Nordsiek GöHPC Coffee 15 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Read And Write

Read
ssize_t bytes_read = read(fd, buffer, bytes_to_read);

Write
ssize_t bytes_written = write(fd, buffer, bytes_to_write);

Dr. Freja Nordsiek GöHPC Coffee 16 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Enable And Disable

Enable O_DIRECT

1 int flags = fcntl(fd, F_GETFL);
2 int err = fcntl(fd, F_SETFL, flags | O_DIRECT);

Disable O_DIRECT

1 int flags = fcntl(fd, F_GETFL);
2 int err = fcntl(fd, F_SETFL, flags & ~O_DIRECT);

Dr. Freja Nordsiek GöHPC Coffee 17 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Aligned Reads And Writes – Requirements

ssize_t bytes_read = read(fd, buffer, bytes_to_read_write);
ssize_t bytes_written = write(fd, buffer, bytes_to_read_write);

Requirements

� buffer starting address must be a multiple of N

� bytes_to_read_write must be a multiple of N

Alignment N

N is generally 512 bytes, but page aligning (4096 bytes usually) reads/writes can
result in better performance in many cases (particularly for disks).

Dr. Freja Nordsiek GöHPC Coffee 18 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Aligned Reads And Writes – When

� If performance gains are worth the trouble

� Sometimes data records are a multiple of N

I The number of pixels in high resolution cameras is often a multiple of 512 or
even 4096

I Large fixed size records can often be padded to 512 or 4096 bytes with
negligible loss of space

� Sometimes something big must be copied (enable O_DIRECT for all but the
unaligned head and tail)

� Reading a big file sequentially (buffer large aligned chunks at a time)

Dr. Freja Nordsiek GöHPC Coffee 19 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Making An Aligned Buffer – Direct C Allocation

If direct C calls can be made:
C11 or newer

1 #include <stdlib.h>
2
3 // ...
4
5 char * buf = aligned_alloc(alignment, size);

POSIX (includes Linux)

1 #include <stdlib.h>
2
3 // ...
4
5 char * buf;
6 int err = posix_memalign(&buf, alignment, size);

Freed as normal with free(buf);.

Dr. Freja Nordsiek GöHPC Coffee 20 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Making An Aligned Buffer – From Unaligned Allocation (Method)

Sometimes, one only has access to unaligned allocation.
An aligned suballocation of n bytes can be made in the following steps:

1 Round n up to the nearest multiple of N to get nunaligned

2 Allocate nunaligned bytes for the unaligned buffer

3 Round the starting address of the unaligned buffer up to the nearest
multple of N to get aaligned

4 The aligned buffer of size n starts at address aaligned

5 When done with the buffer, free the unaligned buffer

Dr. Freja Nordsiek GöHPC Coffee 21 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Making An Aligned Buffer – From Unaligned Allocation (Example)

1 #include <stdlib.h>
2

3 // ...
4

5 size_t blocks = n / alignment;
6 if (n % alignment != 0)
7 blocks++;
8 char * buf_unaligned = malloc(blocks * alignment);
9 char * buf = buf_unaligned;

10 uintptr_t misalignment = (uintptr_t)buf_unaligned % alignment
11 if (misalignment != 0)
12 buf += (alignment - misalignment);

Dr. Freja Nordsiek GöHPC Coffee 22 / 23

Overview Performance Improving Performance Linux Low Level IO O_DIRECT

Alternatives When O_DIRECT Is Not Possible

Memory Mapping for Files

� Uses virtual memory system

� File looks like an array (very simple access)

� OS handles aligned reads and writes dynamically in response to reads and
writes in the background

� More overhead compared to O_DIRECT

� Extra work for large files on 32-bit systems (can only map chunks at a time)

Dr. Freja Nordsiek GöHPC Coffee 23 / 23

	Overview
	Performance
	Improving Performance
	Linux Low Level IO
	O_DIRECT

