
MemoryMapping for IOand
SharingDataBetweenProcesses

Dr. Freja Nordsiek

GWDG AG-C

June 21, 2023 GöHPC Coffee

)

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Table of contents

1 Overview

2 Virtual Memory

3 How Memory Mapping Works

4 Memory Mapped Files

5 Sharing Data Between Processes

Dr. Freja Nordsiek GöHPC Coffee 2 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Why

Why do IO?

� Give program data

� Get program results

� Move data to another device

Why share data between processes?

� Use more cores to get results faster

� Output requires two or more programs to work together

� intra-node MPI communication

Dr. Freja Nordsiek GöHPC Coffee 3 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

How IO Is Done Without Memory Mapping– User Side
user code

OSsyscall

Data Buffer

user code Language Library

Language IO

Data Buffer Data Bufferpossibly copied

OSsyscall

user code Language Library libc

Language IO

Data Buffer Data Bufferpossibly copied

libc IO

Data Bufferpossibly copied

OSsyscall

Note: functions can return earlier on the chain depending on buffering, size of
data, previous operations, etc.

Dr. Freja Nordsiek GöHPC Coffee 4 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

How IO Is Done Without Memory Mapping – OS Side

OS

RAM File

Device IO Buffer w/o DMA or where DMA is not desired

Device IO Buffer w/ DMA

Buffer Given to Syscall

File-like Function

read or writen

Contents

data copied

Data Buffer

possibly copied

Aligned Data Buffer

possibly copied

Devicecopied to/from register

DeviceDMA copy

Note: depending on buffering/caching and previous operations, not every syscall
results in a read/write.

Dr. Freja Nordsiek GöHPC Coffee 5 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

The Two Ways to Access A File

Standard IO

� Includes POSIX, libc, libstdc++, Python, etc.

� Keep track of a file position that can be moved

� Read and/or write bytes after the current file position

Memory mapped IO

� Access file as if it was an array of bytes

� Requires an MMU (Memory Management Unit) – Virtual Memory

� OS transparently handles the actual low-level reading/writing the file
to/from memory

Dr. Freja Nordsiek GöHPC Coffee 6 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Memory Layout – No MMU

Physical Memory

ROM Fixed Data StackHeapProgramBufferHdw. Reg. OS

Dr. Freja Nordsiek GöHPC Coffee 7 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Memory Layout – With MMU

Physical Memory

Memory Mapped File

Hidden
for

Security

Hidden
for

Security

Program Virtual Memory

Dr. Freja Nordsiek GöHPC Coffee 8 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Pages

Memory broken into pages

� CPU has fixed allowed sizes

� OS picks one or more

� Default size is usually 4 KiB (x86), 16 KiB, or 64 KiB

� OS sometimes support huge pages (2 MiB, 1 GiB, etc.) at the same time

Virtual Memory

� Page table translates the virtual pages to their physical page

� Physical page can be mapped to 1+ virtual pages

� Page fault if program accesses page not in the page table

� OS provides functionality on page fault (e.g segfault, allocation, IO, etc.)

� Pages with writes are marked as dirty for OS to respond to
Dr. Freja Nordsiek GöHPC Coffee 9 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Get Page Size on POSIX

Get PAGE_SIZE

#include <unistd.h>
long page_size = sysconf(_SC_PAGE_SIZE);

Dr. Freja Nordsiek GöHPC Coffee 10 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

After mmap

1
1

1

1

2 3 4 5 6 7 8

12 3 45 67 8

Virtual Memory

Disk Layout

Key

Synced

Missing

Dirty

Dr. Freja Nordsiek GöHPC Coffee 11 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Start of First Read

1
1

1

1

2 3 4 5 6 7 8

12 3 45 67 8

Virtual Memory

Steps:
1. Read triggers page fault
2. OS reads file to RAM page/s
3. OS maps page/s to memory map
4. OS returns control to process
5. Read completes

a = m[offset]

Disk Layout

Key

Synced

Missing

Dirty

Dr. Freja Nordsiek GöHPC Coffee 12 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

After First Read

1
1

1

1

2 3 4 5 6 7 8

12 3 45 67 8

Virtual Memory

Steps:
1. Read triggers page fault
2. OS reads file to RAM page/s
3. OS maps page/s to memory map
4. OS returns control to process
5. Read completes

a = m[offset]

Disk Layout

Key

Synced

Missing

Dirty

Dr. Freja Nordsiek GöHPC Coffee 13 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Second Read

1
1

1

1

2 3 4 5 6 7 8

12 3 45 67 8

Virtual Memory

a = m[offset+1]

Disk Layout

Key

Synced

Missing

Dirty

Dr. Freja Nordsiek GöHPC Coffee 14 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Write to Read Page

1
1

1

1

2 3 4 5 6 7 8

12 3 45 67 8

Virtual Memory

m[offset+2] = b

Disk Layout

Key

Synced

Missing

Dirty

Dr. Freja Nordsiek GöHPC Coffee 15 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Start of Write to Unread Page

1
1

1

1

2 3 4 5 6 7 8

12 3 45 67 8

Virtual Memory

m[offset+8192] = c

Disk Layout

Key

Synced

Missing

DirtySteps:
1. Write triggers page fault
2. OS reads file to RAM page/s
3. OS maps page/s to memory map
4. OS returns control to process
5. Write completes

Dr. Freja Nordsiek GöHPC Coffee 16 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

After Write to Unread Page

1
1

1

1

2 3 4 5 6 7 8

12 3 45 67 8

Virtual Memory

m[offset+8192] = c

Disk Layout

Key

Synced

Missing

DirtySteps:
1. Write triggers page fault
2. OS reads file to RAM page/s
3. OS maps page/s to memory map
4. OS returns control to process
5. Write completes

Dr. Freja Nordsiek GöHPC Coffee 17 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Start of Synchronization

1
1

1

1

2 3 4 5 6 7 8

12 3 45 67 8

Virtual Memory

msync, munmap, or whenever OS decides

Disk Layout

Key

Synced

Missing

Dirty

Dr. Freja Nordsiek GöHPC Coffee 18 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

After Synchronization

1
1

1

1

2 3 4 5 6 7 8

12 3 45 67 8

Virtual Memory

msync, munmap, or whenever OS decides

Disk Layout

Key

Synced

Missing

Dirty

Dr. Freja Nordsiek GöHPC Coffee 19 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Introduction

Basic Steps

1 Open file with POSIX open

2 Do any desired preparations with standard POSIX IO including ftruncate

3 Memory map file with mmap

4 Do any desired reading, writing, and synchronizing on memory mapped area

5 Delete the mapping with munmap

Notes

� POSIX file handle can be closed at any point after mmap

� DON’T ftruncate FILE TO SHORTER THAN END OF MAPPING!

Dr. Freja Nordsiek GöHPC Coffee 20 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Review – libc and POSIX Standard IO Functions

libc calls POSIX calls

#include <stdio.h> #include <fcntl.h>
#include <unistd.h>

FILE *fopen(char *filename, char *mode) int open(const char *pathname, int flags)
int fclose(FILE *f) int close(int fd)
int fflush(FILE *f)

int fdatasync(int fd)
int fsync(int fd)
int ftruncate(int fd, off_t length)

int fseek(FILE *f, long offset, int origin) off_t lseek(int fd, off_t offset, int whence)
off64_t lseek64(int fd, off64_t offset, int whence)†

long ftell(FILE *f) off_t lseek(int fd, 0, SEEK_CUR)
off64_t lseek64(int fd, 0, SEEK_CUR)†

size_t fread(void *buf, size_t size, size_t count, FILE *f) ssize_t read(int fd, void *buf, size_t count)
size_t fwrite(void *buf, size_t size, size_t count, FILE *f) ssize_t write(int fd, const void *buf, size_t count)

†Linux extensions to POSIX

POSIX file handles are int.

On Linux, many things are file handles in addition to actual files

Dr. Freja Nordsiek GöHPC Coffee 21 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Open File

int fd = open("foo.txt", FLAGS);
int fd = open("foo.txt", FLAGS, MODE);
FLAGS are OR-ed together

Access FLAGS
read O_RDONLY

write O_WRONLY

read and write O_RDWR

Creation FLAGS
create if not exist O_CREATE

must create O_EXCL

truncate O_TRUNC

append O_APPEND

Synchronization FLAGS
fsync every write O_SYNC

non-blocking O_NONBLOCK

Aligned IO FLAGS (Linux extension)

aligned reads/writes only O_DIRECT

Dr. Freja Nordsiek GöHPC Coffee 22 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Open File

int fd = open("foo.txt", FLAGS);
int fd = open("foo.txt", FLAGS, MODE);
FLAGS are OR-ed together

Access FLAGS
read O_RDONLY

write O_WRONLY

read and write O_RDWR

Creation FLAGS
create if not exist O_CREATE

must create O_EXCL

truncate O_TRUNC

append O_APPEND

Synchronization FLAGS
fsync every write O_SYNC

non-blocking O_NONBLOCK

Aligned IO FLAGS (Linux extension)

aligned reads/writes only O_DIRECT

Dr. Freja Nordsiek GöHPC Coffee 22 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Open File

int fd = open("foo.txt", FLAGS);
int fd = open("foo.txt", FLAGS, MODE);
FLAGS are OR-ed together

Access FLAGS
read O_RDONLY

write O_WRONLY

read and write O_RDWR

Creation FLAGS
create if not exist O_CREATE

must create O_EXCL

truncate O_TRUNC

append O_APPEND

Synchronization FLAGS
fsync every write O_SYNC

non-blocking O_NONBLOCK

Aligned IO FLAGS (Linux extension)

aligned reads/writes only O_DIRECT

Dr. Freja Nordsiek GöHPC Coffee 22 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Open File

int fd = open("foo.txt", FLAGS);
int fd = open("foo.txt", FLAGS, MODE);

MODE are OR-ed together and set
permissions

These are the standard values used
with chmod

Owner
read S_IRUSR

write S_IWUSR

execute S_IXUSR

Group
read S_IRGRP

write S_IWGRP

execute S_IXGRP

Other
read S_IROTH

write S_IWOTH

execute S_IXOTH

Dr. Freja Nordsiek GöHPC Coffee 23 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Important Note on Opening File

Readonly Mapping

FLAGS can include O_RDONLY or O_RDWR.

Writable Mapping

FLAGS must include O_RDWR.

� Even if no reads are planned

� This is because a page must be read before it can be written

Dr. Freja Nordsiek GöHPC Coffee 24 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Change File Length

Change file length

int err = ftruncate(fd, new_length);

Increasing file length

� ftruncate can take a new length that is bigger than the current length

� File will be pre-allocated on the filesystem

� Pre-allocation is much more efficient than writing zeros one at a time or
even blocks at a time

Notes

� NEVER REDUCE FILE SIZE TO LESS THAN THE MAPPED REGION

� Pre-allocate a file for writing if you want one contiguous mapping

Dr. Freja Nordsiek GöHPC Coffee 25 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Review – Close and Standard Read And Write

Close file
int err = close(fd);

Read
ssize_t bytes_read = read(fd, buffer, bytes_to_read);

Write
ssize_t bytes_written = write(fd, buffer, bytes_to_write);

Dr. Freja Nordsiek GöHPC Coffee 26 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Memory Map File

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

On Success

� Returns starting address of mapping

� close-ing file handle FD does not affect mapping

On Failure

� Returns MAP_FAILED

� Sets errno

Dr. Freja Nordsiek GöHPC Coffee 27 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Memory Map File

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

ADDR

� Suggested mapping start address

� NULL to let OS decide

� FLAGS with MAP_FIXED makes it a
demand

� Should be page aligned

FD

� File handle of file to map

� -1 to not map any file

Dr. Freja Nordsiek GöHPC Coffee 28 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Memory Map File

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

OFFSET

� File offset to start mapping

� Relative to beginning

� Must be page aligned

LENGTH

� Number of bytes to map

� Must be postive

LENGTH+ OFFSET < FILE_LENGTH

Dr. Freja Nordsiek GöHPC Coffee 29 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Memory Map File

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

Protection PROT (OR together)
none PROT_NONE

read PROT_READ

write PROT_WRITE

execute PROT_EXEC

Dr. Freja Nordsiek GöHPC Coffee 30 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Memory Map File

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

FLAGS for a file (OR together)
MAP_PRIVATE Private copy, writes are not propogated

MAP_SHARED All mappings synchronized, writes synchronize to file

MAP_SHARED_VALIDATE Like MAP_SHARED but reject unknown FLAGS

MAP_FIXED ADDR is a demand

MAP_FIXED_NOREPLACE Like MAP_FIXED but don’t clobber another mapping

MAP_POPULATE Pre-pagefault whole mapping

MAP_32BIT Map into the lower 2 GiB of memory

Dr. Freja Nordsiek GöHPC Coffee 31 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Reading and Writing

� Read and write just like an array

� OS transparently handles page faults and write-back

� Note, page faults do cause latency

Reading data

1 uint8_t * m = (uint8_t *)mmap(...);
2

3 if (m == MAP_FAILED)
4 _Exit(1);
5

6 uint8_t a = m[10];

Writing data

1 uint8_t * m = (uint8_t *)mmap(...);
2

3 if (m == MAP_FAILED)
4 _Exit(1);
5

6 m[391] = 4;

Dr. Freja Nordsiek GöHPC Coffee 32 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Synchronizing to File

int err = msync(void *ADDR, size_t LENGTH, int FLAGS);

� Synchronizes LENGTH bytes staring at address ADDR

� ADDR can be anywhere in mapping

� ADDR does not have to be page aligned

Synchronization FLAGS
MS_ASYNC Schedule synchronization but return immediately

MS_SYNC Start synchronization and return when complete

MS_INVALIDATE Invalidate other mappings of same file to refresh them

Dr. Freja Nordsiek GöHPC Coffee 33 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Unmapping

int err = munmap(void *ADDR, size_t LENGTH);

� Unmaps pages starting from ADDR extenging out LENGTH bytes

� ADDR can be anywhere in mapping

� ADDR must be page aligned

� If the address range partially overlaps a page, the whole page is
unmapped

Dr. Freja Nordsiek GöHPC Coffee 34 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Example

1 #include <stdio.h>
2 #include <string.h>
3 #include <fcntl.h>
4 #include <sys/mman.h>
5 #include <unistd.h>
6
7 #define DATA "hello"
8
9 int main()

10 {
11 int f = open("foo.txt", O_RDWR | O_CREAT | O_TRUNC);
12 const size_t length = strlen(DATA);
13 write(f, DATA, length);
14 char * m = (char *)mmap(NULL, length, PROT_READ | PROT_WRITE, MAP_SHARED, f, 0);
15 close(f);
16 m[0] = 'H';
17 fwrite(m, 1, length, stdout);
18 fputc('\n', stdout);
19 munmap(m, length);
20 return 0;
21 }

Dr. Freja Nordsiek GöHPC Coffee 35 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Another Example

Example with full benchmarks comparing memory mapped writing to other
output methods:

https://gitlab-ce.gwdg.de/gwdg/hpc-usage-examples/-/tree/main/performance-engineering/sequential_file_write

Dr. Freja Nordsiek GöHPC Coffee 36 / 45

https://gitlab-ce.gwdg.de/gwdg/hpc-usage-examples/-/tree/main/performance-engineering/sequential_file_write

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Ways to Share Data Between Processes

� Communicate by pipes

� Communicate by sockets

� Read/write to the same file/s

� Read/write to the same memory

Dr. Freja Nordsiek GöHPC Coffee 37 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Remember

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

FD

� File handle of file to map

� -1 to not map any file

FLAGS for a file (OR together)
MAP_SHARED All mappings synchronized, writes synchronize to file

MAP_SHARED_VALIDATE Like MAP_SHARED but reject unknown FLAGS

Dr. Freja Nordsiek GöHPC Coffee 38 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Three Strategies

1 Processes map the same file on disk

2 First process maps no file (anonymous) and then forks (child processes
inherit mapping)

3 Processes map the same file in memory (shared memory)

Dr. Freja Nordsiek GöHPC Coffee 39 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

1 – Mapping Same File On Disk

� All process map file with MAP_SHARED

� Use msync with MAP_INVALIDATE to guarantee that changes are propagated
to other process

� Not particularly efficient

� Wears down disk

Dr. Freja Nordsiek GöHPC Coffee 40 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

2 – Anonymous Mapping and Then Fork

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

FD
-1 to not map any file (anonymous mapping)

OFFSET
Zero

FLAGS for an anonymous mapping (OR together)
MAP_SHARED All mappings synchronized

MAP_ANONYMOUS Anonymous mapping (memory only, no file)

Use atomics and semaphores for synchronization!
Dr. Freja Nordsiek GöHPC Coffee 41 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

3 – Map Shared Memory

� OS maintains a ramdisk for shared memory

� Processes used files in shared memory

� Work just like files except they are in memory (RAM and swap)

� Mappings don’t require msync calls

� Use POSIX file calls are synchronized

� Use atomics or semaphores for synchronization after mmap

Dr. Freja Nordsiek GöHPC Coffee 42 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Open Shared Memory File

1 #include <sys/mman.h>
2 #include <sys/stat.h>
3 #include <fcntl.h>
4 int shm_open(const char *NAME, int OFLAG, mode_t MODE);

File NAME
Processes must agree on one

Creation OFLAG
read O_RDONLY

read and write O_RDWR

create if not exist O_CREATE

must create O_EXCL

truncate O_TRUNC

Access MODE
Same as for open (standard POSIX
permissions number value)

Dr. Freja Nordsiek GöHPC Coffee 43 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Close And Delete Shared Memory File

Close file – same as always

int err = close(fd);

Delete shared memory file

int shm_unlink(const char *NAME);

Dr. Freja Nordsiek GöHPC Coffee 44 / 45

Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Memory Map Shared Memory File

� mmap the same as any other file

� MAP_SHARED required for actual passing data

� Is a shared array of bytes

� Each process might have a different starting address of the mapping

� For synchronization in the mapped area, use:

I Atomic memory instructions
I POSIX semaphores (type man shm_overview on Linux for more info)

Dr. Freja Nordsiek GöHPC Coffee 45 / 45

	Overview
	Virtual Memory
	How Memory Mapping Works
	Memory Mapped Files
	Sharing Data Between Processes

