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Why

Why do IO?

� Give program data

� Get program results

� Move data to another device

Why share data between processes?

� Use more cores to get results faster

� Output requires two or more programs to work together

� intra-node MPI communication
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How IO Is Done Without Memory Mapping– User Side
user code

OSsyscall

Data Buffer

user code Language Library

Language IO

Data Buffer Data Bufferpossibly copied

OSsyscall

user code Language Library libc

Language IO

Data Buffer Data Bufferpossibly copied

libc IO

Data Bufferpossibly copied

OSsyscall

Note: functions can return earlier on the chain depending on buffering, size of
data, previous operations, etc.
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How IO Is Done Without Memory Mapping – OS Side

OS

RAM File

Device IO Buffer w/o DMA or where DMA is not desired

Device IO Buffer w/ DMA

Buffer Given to Syscall

File-like Function

read or writen

Contents

data copied

Data Buffer

possibly copied

Aligned Data Buffer

possibly copied

Devicecopied to/from register

DeviceDMA copy

Note: depending on buffering/caching and previous operations, not every syscall
results in a read/write.
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The Two Ways to Access A File

Standard IO

� Includes POSIX, libc, libstdc++, Python, etc.

� Keep track of a file position that can be moved

� Read and/or write bytes after the current file position

Memory mapped IO

� Access file as if it was an array of bytes

� Requires an MMU (Memory Management Unit) – Virtual Memory

� OS transparently handles the actual low-level reading/writing the file
to/from memory
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Memory Layout – No MMU

Physical Memory

ROM Fixed Data StackHeapProgramBufferHdw. Reg. OS
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Memory Layout – With MMU

Physical Memory

Memory Mapped File

Hidden
for

Security

Hidden
for

Security

Program Virtual Memory
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Pages

Memory broken into pages

� CPU has fixed allowed sizes

� OS picks one or more

� Default size is usually 4 KiB (x86), 16 KiB, or 64 KiB

� OS sometimes support huge pages (2 MiB, 1 GiB, etc.) at the same time

Virtual Memory

� Page table translates the virtual pages to their physical page

� Physical page can be mapped to 1+ virtual pages

� Page fault if program accesses page not in the page table

� OS provides functionality on page fault (e.g segfault, allocation, IO, etc.)

� Pages with writes are marked as dirty for OS to respond to
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Get Page Size on POSIX

Get PAGE_SIZE

#include <unistd.h>
long page_size = sysconf(_SC_PAGE_SIZE);
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After mmap

1
1

1

1
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Virtual Memory

Disk Layout

Key

Synced

Missing

Dirty
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Start of First Read

1
1

1

1

2 3 4 5 6 7 8

12 3 45 67 8

Virtual Memory

Steps:
1. Read triggers page fault
2. OS reads file to RAM page/s
3. OS maps page/s to memory map
4. OS returns control to process
5. Read completes

a = m[offset]

Disk Layout

Key

Synced

Missing

Dirty
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After First Read

1
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Virtual Memory

Steps:
1. Read triggers page fault
2. OS reads file to RAM page/s
3. OS maps page/s to memory map
4. OS returns control to process
5. Read completes

a = m[offset]

Disk Layout
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Second Read

1
1

1
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Virtual Memory

a = m[offset+1]

Disk Layout

Key

Synced

Missing

Dirty
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Write to Read Page

1
1
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2 3 4 5 6 7 8
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Virtual Memory

m[offset+2] = b

Disk Layout

Key

Synced

Missing

Dirty
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Start of Write to Unread Page

1
1

1

1

2 3 4 5 6 7 8

12 3 45 67 8

Virtual Memory

m[offset+8192] = c

Disk Layout

Key

Synced

Missing

DirtySteps:
1. Write triggers page fault
2. OS reads file to RAM page/s
3. OS maps page/s to memory map
4. OS returns control to process
5. Write completes
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After Write to Unread Page

1
1
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2 3 4 5 6 7 8

12 3 45 67 8

Virtual Memory

m[offset+8192] = c

Disk Layout

Key

Synced

Missing

DirtySteps:
1. Write triggers page fault
2. OS reads file to RAM page/s
3. OS maps page/s to memory map
4. OS returns control to process
5. Write completes
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Start of Synchronization

1
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msync, munmap, or whenever OS decides

Disk Layout
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After Synchronization

1
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Virtual Memory

msync, munmap, or whenever OS decides

Disk Layout

Key

Synced
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Introduction

Basic Steps

1 Open file with POSIX open

2 Do any desired preparations with standard POSIX IO including ftruncate

3 Memory map file with mmap

4 Do any desired reading, writing, and synchronizing on memory mapped area

5 Delete the mapping with munmap

Notes

� POSIX file handle can be closed at any point after mmap

� DON’T ftruncate FILE TO SHORTER THAN END OF MAPPING!
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Review – libc and POSIX Standard IO Functions

libc calls POSIX calls

#include <stdio.h> #include <fcntl.h>
#include <unistd.h>

FILE *fopen(char *filename, char *mode) int open(const char *pathname, int flags)
int fclose(FILE *f) int close(int fd)
int fflush(FILE *f)

int fdatasync(int fd)
int fsync(int fd)
int ftruncate(int fd, off_t length)

int fseek(FILE *f, long offset, int origin) off_t lseek(int fd, off_t offset, int whence)
off64_t lseek64(int fd, off64_t offset, int whence)†

long ftell(FILE *f) off_t lseek(int fd, 0, SEEK_CUR)
off64_t lseek64(int fd, 0, SEEK_CUR)†

size_t fread(void *buf, size_t size, size_t count, FILE *f) ssize_t read(int fd, void *buf, size_t count)
size_t fwrite(void *buf, size_t size, size_t count, FILE *f) ssize_t write(int fd, const void *buf, size_t count)

†Linux extensions to POSIX

POSIX file handles are int.

On Linux, many things are file handles in addition to actual files
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Open File

int fd = open("foo.txt", FLAGS);
int fd = open("foo.txt", FLAGS, MODE);
FLAGS are OR-ed together

Access FLAGS
read O_RDONLY

write O_WRONLY

read and write O_RDWR

Creation FLAGS
create if not exist O_CREATE

must create O_EXCL

truncate O_TRUNC

append O_APPEND

Synchronization FLAGS
fsync every write O_SYNC

non-blocking O_NONBLOCK

Aligned IO FLAGS (Linux extension)

aligned reads/writes only O_DIRECT

Dr. Freja Nordsiek GöHPC Coffee 22 / 45



Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Open File

int fd = open("foo.txt", FLAGS);
int fd = open("foo.txt", FLAGS, MODE);
FLAGS are OR-ed together

Access FLAGS
read O_RDONLY

write O_WRONLY

read and write O_RDWR

Creation FLAGS
create if not exist O_CREATE

must create O_EXCL

truncate O_TRUNC

append O_APPEND

Synchronization FLAGS
fsync every write O_SYNC

non-blocking O_NONBLOCK

Aligned IO FLAGS (Linux extension)

aligned reads/writes only O_DIRECT

Dr. Freja Nordsiek GöHPC Coffee 22 / 45



Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Open File

int fd = open("foo.txt", FLAGS);
int fd = open("foo.txt", FLAGS, MODE);
FLAGS are OR-ed together

Access FLAGS
read O_RDONLY

write O_WRONLY

read and write O_RDWR

Creation FLAGS
create if not exist O_CREATE

must create O_EXCL

truncate O_TRUNC

append O_APPEND

Synchronization FLAGS
fsync every write O_SYNC

non-blocking O_NONBLOCK

Aligned IO FLAGS (Linux extension)

aligned reads/writes only O_DIRECT

Dr. Freja Nordsiek GöHPC Coffee 22 / 45



Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Open File

int fd = open("foo.txt", FLAGS);
int fd = open("foo.txt", FLAGS, MODE);

MODE are OR-ed together and set
permissions

These are the standard values used
with chmod

Owner
read S_IRUSR

write S_IWUSR

execute S_IXUSR

Group
read S_IRGRP

write S_IWGRP

execute S_IXGRP

Other
read S_IROTH

write S_IWOTH

execute S_IXOTH
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Important Note on Opening File

Readonly Mapping

FLAGS can include O_RDONLY or O_RDWR.

Writable Mapping

FLAGS must include O_RDWR.

� Even if no reads are planned

� This is because a page must be read before it can be written
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Change File Length

Change file length

int err = ftruncate(fd, new_length);

Increasing file length

� ftruncate can take a new length that is bigger than the current length

� File will be pre-allocated on the filesystem

� Pre-allocation is much more efficient than writing zeros one at a time or
even blocks at a time

Notes

� NEVER REDUCE FILE SIZE TO LESS THAN THE MAPPED REGION

� Pre-allocate a file for writing if you want one contiguous mapping

Dr. Freja Nordsiek GöHPC Coffee 25 / 45



Overview Virtual Memory How Memory Mapping Works Memory Mapped Files Sharing Data Between Processes

Review – Close and Standard Read And Write

Close file
int err = close(fd);

Read
ssize_t bytes_read = read(fd, buffer, bytes_to_read);

Write
ssize_t bytes_written = write(fd, buffer, bytes_to_write);
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Memory Map File

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

On Success

� Returns starting address of mapping

� close-ing file handle FD does not affect mapping

On Failure

� Returns MAP_FAILED

� Sets errno
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Memory Map File

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

ADDR

� Suggested mapping start address

� NULL to let OS decide

� FLAGS with MAP_FIXED makes it a
demand

� Should be page aligned

FD

� File handle of file to map

� -1 to not map any file
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Memory Map File

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

OFFSET

� File offset to start mapping

� Relative to beginning

� Must be page aligned

LENGTH

� Number of bytes to map

� Must be postive

LENGTH+ OFFSET < FILE_LENGTH
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Memory Map File

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

Protection PROT (OR together)
none PROT_NONE

read PROT_READ

write PROT_WRITE

execute PROT_EXEC
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Memory Map File

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

FLAGS for a file (OR together)
MAP_PRIVATE Private copy, writes are not propogated

MAP_SHARED All mappings synchronized, writes synchronize to file

MAP_SHARED_VALIDATE Like MAP_SHARED but reject unknown FLAGS

MAP_FIXED ADDR is a demand

MAP_FIXED_NOREPLACE Like MAP_FIXED but don’t clobber another mapping

MAP_POPULATE Pre-pagefault whole mapping

MAP_32BIT Map into the lower 2 GiB of memory
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Reading and Writing

� Read and write just like an array

� OS transparently handles page faults and write-back

� Note, page faults do cause latency

Reading data

1 uint8_t * m = (uint8_t *)mmap(...);
2

3 if (m == MAP_FAILED)
4 _Exit(1);
5

6 uint8_t a = m[10];

Writing data

1 uint8_t * m = (uint8_t *)mmap(...);
2

3 if (m == MAP_FAILED)
4 _Exit(1);
5

6 m[391] = 4;
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Synchronizing to File

int err = msync(void *ADDR, size_t LENGTH, int FLAGS);

� Synchronizes LENGTH bytes staring at address ADDR

� ADDR can be anywhere in mapping

� ADDR does not have to be page aligned

Synchronization FLAGS
MS_ASYNC Schedule synchronization but return immediately

MS_SYNC Start synchronization and return when complete

MS_INVALIDATE Invalidate other mappings of same file to refresh them
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Unmapping

int err = munmap(void *ADDR, size_t LENGTH);

� Unmaps pages starting from ADDR extenging out LENGTH bytes

� ADDR can be anywhere in mapping

� ADDR must be page aligned

� If the address range partially overlaps a page, the whole page is
unmapped
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Example

1 #include <stdio.h>
2 #include <string.h>
3 #include <fcntl.h>
4 #include <sys/mman.h>
5 #include <unistd.h>
6
7 #define DATA "hello"
8
9 int main()

10 {
11 int f = open("foo.txt", O_RDWR | O_CREAT | O_TRUNC);
12 const size_t length = strlen(DATA);
13 write(f, DATA, length);
14 char * m = (char *)mmap(NULL, length, PROT_READ | PROT_WRITE, MAP_SHARED, f, 0);
15 close(f);
16 m[0] = 'H';
17 fwrite(m, 1, length, stdout);
18 fputc('\n', stdout);
19 munmap(m, length);
20 return 0;
21 }
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Another Example

Example with full benchmarks comparing memory mapped writing to other
output methods:

https://gitlab-ce.gwdg.de/gwdg/hpc-usage-examples/-/tree/main/performance-engineering/sequential_file_write
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Ways to Share Data Between Processes

� Communicate by pipes

� Communicate by sockets

� Read/write to the same file/s

� Read/write to the same memory
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Remember

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

FD

� File handle of file to map

� -1 to not map any file

FLAGS for a file (OR together)
MAP_SHARED All mappings synchronized, writes synchronize to file

MAP_SHARED_VALIDATE Like MAP_SHARED but reject unknown FLAGS
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Three Strategies

1 Processes map the same file on disk

2 First process maps no file (anonymous) and then forks (child processes
inherit mapping)

3 Processes map the same file in memory (shared memory)
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1 – Mapping Same File On Disk

� All process map file with MAP_SHARED

� Use msync with MAP_INVALIDATE to guarantee that changes are propagated
to other process

� Not particularly efficient

� Wears down disk
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2 – Anonymous Mapping and Then Fork

1 #include <sys/mman.h>
2 void * mmap(void *ADDR, size_t LENGTH, int PROT, int FLAGS, int FD, off_t OFFSET);

FD
-1 to not map any file (anonymous mapping)

OFFSET
Zero

FLAGS for an anonymous mapping (OR together)
MAP_SHARED All mappings synchronized

MAP_ANONYMOUS Anonymous mapping (memory only, no file)

Use atomics and semaphores for synchronization!
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3 – Map Shared Memory

� OS maintains a ramdisk for shared memory

� Processes used files in shared memory

� Work just like files except they are in memory (RAM and swap)

� Mappings don’t require msync calls

� Use POSIX file calls are synchronized

� Use atomics or semaphores for synchronization after mmap
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Open Shared Memory File

1 #include <sys/mman.h>
2 #include <sys/stat.h>
3 #include <fcntl.h>
4 int shm_open(const char *NAME, int OFLAG, mode_t MODE);

File NAME
Processes must agree on one

Creation OFLAG
read O_RDONLY

read and write O_RDWR

create if not exist O_CREATE

must create O_EXCL

truncate O_TRUNC

Access MODE
Same as for open (standard POSIX
permissions number value)
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Close And Delete Shared Memory File

Close file – same as always

int err = close(fd);

Delete shared memory file

int shm_unlink(const char *NAME);
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Memory Map Shared Memory File

� mmap the same as any other file

� MAP_SHARED required for actual passing data

� Is a shared array of bytes

� Each process might have a different starting address of the mapping

� For synchronization in the mapped area, use:

I Atomic memory instructions
I POSIX semaphores (type man shm_overview on Linux for more info)
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