
Using the GWDG Scientific Compute Cluster - An
Introduction

by Azat Khuziyakhmetov and Marcus Boden

Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen

Am Fassberg, 37077 Göttingen

Fon: 0551 201-1510 Fax: 0551 201-2150
gwdg@gwdg.de www.gwdg.de

Outline

1 Connecting to the frontends

2 The most important Linux commands

3 Preparing the compilation environment with “modules”

4 Compiling Software

5 Efficiently Submitting Jobs to the Cluster

6 Getting Help

Section 1

Connecting to the frontends

Frontends

gwdu101 (and transfer-scc): Abu-Dhabi AMD Opteron 6220
å processor features identical to gwdaXXX
å older nodes in fat-partition
å access to /scratch

gwdu102: Sandy-Bridge Intel E5-2670 v1
å processor features identical to gwddXXX
å older nodes in medium-partition
å access to /scratch

gwdu103: Broadwell Intel E5-2650 v4
å processor features identical to dfaXXX, dmpXXX, dgeXXX,

dteXXX
å new nodes in fat and medium partition (and gpu partition)
å access to /scratch2

ssh to the frontends

Linux or OS X: “ssh gwdu101.gwdg.de -l {GWDG-USERID}”
Windows: Download putty.exe from
https://www.chiark.greenend.org.uk/∼sgtatham/putty

å Run it. Enter “gwdu101.gwdg.de” in hostname and click open
å Select “Yes” to trust the connection
å Login as: {GWDG-USERID}
å Enter password

The authenticity of host ’gwdu101.gwdg.de (134.76.8.101)’ can’t...
ECDSA key fingerprint is SHA256:sIJNEepmILeEq/7Zqq4HCtpTM8L98ar...or
ECDSA key fingerprint is 7c:52:2b:17:f8:ba:29:bd:c5:45:d1:1a:9e...or
RSA key fingerprint is b9:f9:46:0f:23:c8:8d:76:b9:83:b9:1b:f6:5...or
ED25519 256 key fingerprint is e3:ef:39:f5:df:4f:c2:e2:c4:d0:28...
Are you sure you want to continue connecting (yes/no)?

h

Section 2

The most important Linux commands

Listing files and directories

List the current directory you are in, “ls”
å List the “hidden” files (beginning with “.”) too, “ls -a”
å All files in an extended manner, “ls -la” or just type “l”

Let’s look at three lines of the output
drwxrwxrwx 3 tehlers users 4096 4. Apr 17:29 test
-rw-r--r-- 1 tehlers users 283 24. Sep 2003 Info.txt
lrwxrwxrwx 1 root root 23 Jul 22 12:10 passwd -> /etc/passwd

1 2 3 4 5 6 7 8 9 10

ten permission flags:
1 directory flag, “d”: directory, “-”: normal file, “l”: symlink

2,3,4 read, write, execute permission for User (Owner of the file)
5,6,7 read, write, execute permission for Group
8,9,10 read, write, execute permission for Others

Changing the language,
what if I don’t undestand German

> echo $LANG
de_DE.UTF-8
> rm test
rm: reguläre leere Datei "test" entfernen?

> export LANG=en_US.UTF-8
> rm test
rm: remove regular empty file ‘test’?

For persistent English language, put it in your “.profile”:
echo ’export LANG=en_US.UTF-8’ >> ∼/.profile

File operations, processes and file system

cd change directory
top display Linux processes, sorted list
ps display current processes, imp. opt. a [all sessions], u

[owner], x [all], w [wide], ww [even wider]
touch create file / update timestamps

more... cp, rm, mv, mkdir, rmdir, ln

df display filesystem usage, df -h, df -hl

chmod

Files attributes (mode bits) can be changed with chmod
chmod can be used in two ways:

å user friendly form:
u (user) g (group) o (others) a (all)
chmod a+r {file}, chmod g=rwx,o+r {file}

å tell the mode bits:
chmod 744 {file}

chmod (2)

0-7 are 3 bits: 111 → 7
same order, like in dir listing: r,w,x

000 0 → --- no read write or execute allowed
001 1 → --x (last bit is set)
010 2 → -w- (middle bit is set)
011 3 → -wx (last 2 bits are set)
100 4 → r-- (first bit is set)
101 5 → r-x (first and last bits are set)
110 6 → rw- (first and second bits are set)
111 7 → rwx (all 3 bits are set)

chmod (3)

In sum we have 9 bits now in 3 groups (user, group, others)
But there is a 4th group: SUID/SGID/sticky-bits
SUID/SGID means that the called program will run with the
UID or GID of the owner

å e.g. if the program owns root and has SUID set, you run the
program as root

å chmod u+s {file}, or chmod g+s {file},
chmod a+s {file} would set both

å Since we are normal users on the system, this is very seldom
needed.

sticky-bit is more relevant for you, if you open a directory for
colleagues to write (chmod g=rwx {dir})

å the stick-bit prevents others from deleting files, they do not
own. (chmod +t {dir})

å e.g. if you create a file, others cannot delete it, even though
they have write permission to the directory.

umask

standard umask is “022” or “u=rwx,g=rx,o=rx”
umask is the inversion (mask) of default file attributes, when
creating a file

å But you can use it like chmod with u=XXX, g=XXX or
o=XXX, to display write “umask -S”

å e.g. umask u=rwx,g=rx,o=

Editors, help and Bash

vi/vim, mcedit, joe, nano
For most commands you can read the manual pages, just type “man
{COMMAND}”.
The prompt is a so called “Shell” with built-in commands and
functions. We are using the “bash”. Type “man bash” to get an
impression about the power and flexibility of that shell.

Editors, help and Bash

vi/vim, mcedit, joe, nano
For most commands you can read the manual pages, just type “man
{COMMAND}”.
The prompt is a so called “Shell” with built-in commands and
functions. We are using the “bash”. Type “man bash” to get an
impression about the power and flexibility of that shell.

nice and renice

Test your program before submission
You can do it on frontends (only short tests!)
And please be nice on gwdu101, gwdu102 and gwdu103

å nice -n 19 {COMMAND}

If you forgot to nice and don’t want to restart the program
å open a new terminal:
å renice -n 19 {PROCESS ID}

For heavy programs use “short” partitions (part II)

Environment variables

Where the system gets all the commands we learned today?
Bash searches all paths in the environment variable PATH.

gwdu101:84 15:03:22 ~ > echo -e ${PATH//:/:\\n}
/opt/slurm/bin:
/usr/lib64/qt-3.3/bin:
/opt/lsf/10.1/linux2.6-glibc2.3-x86_64/etc:
/opt/lsf/10.1/linux2.6-glibc2.3-x86_64/bin:
/usr/local/bin:
/usr/bin:
/usr/local/sbin:
/usr/sbin:
/sbin:
/usr/sbin:
/cm/local/apps/environment-modules/3.2.10/bin

The first Shell-Script

For our first Shell script we need additional information
grep gets the input and only outputs matching lines, command
“grep akhuziy” outputs only lines containing “akhuziy”
A Pipe “|” puts the output stream (stdout) into the input
stream (stdin) of another program:

å “ls -la | grep akhuziy” shows only files owned by akhuziy
or if the filename contains “akhuziy”.

“mktemp -d /scratch/${USER}/XXXXXXXX” will create a
unique directory, e.g. /scratch/akhuziy/XymeK4nq and echo it
to stdout
To store an output of a program in a variable, we write
“TEMPDIR=$(mktemp -d /scratch/${USER}/XXXXXXXX)”

Let’s write a little Shell script...

The first Shell-Script

For our first Shell script we need additional information
grep gets the input and only outputs matching lines, command
“grep akhuziy” outputs only lines containing “akhuziy”
A Pipe “|” puts the output stream (stdout) into the input
stream (stdin) of another program:

å “ls -la | grep akhuziy” shows only files owned by akhuziy
or if the filename contains “akhuziy”.

“mktemp -d /scratch/${USER}/XXXXXXXX” will create a
unique directory, e.g. /scratch/akhuziy/XymeK4nq and echo it
to stdout
To store an output of a program in a variable, we write
“TEMPDIR=$(mktemp -d /scratch/${USER}/XXXXXXXX)”

Let’s write a little Shell script...

Reformatting Data

∼ > cat file1
column1 column2 column3
1 2 3
4 5 6

We just want column number 2.
∼ > cat file1 | (while read a b c; do echo $b; done)
column2
2
5

Reformatting Data II

∼ > cat file2
column1,column2,column3
1,2,3
4,5,6

We still want column 2, but the separator is “,”.
∼ > cat file2 | sed "s/,/ /g" |
(while read a b c; do echo $b; done)

column2
2
5

Reformatting Data III

We only need line number 2 and column number 2 from file2.
∼ > cat file2
column1,column2,column3
1,2,3
4,5,6

∼ > cat file2 | sed "s/,/ /g" |
(count=0; while read a b c;
do let count=$count+1; if ["$count" = "2"];
then echo $b; fi; done)
2

Reformatting Data IV

The comma separated list has empty values.
∼ > cat file3
column1,column2,column3
1,2,3
4,5,6
7,,9

With “ ” as a separator we get:
∼ > cat file3 | sed "s/,/ /g" | (while read a b c; do echo $c; done)
colum3
3
6

We set the bash-variable “IFS”
∼ > IFS=","
∼ > cat file3 | (while read a b c; do echo $c; done)
colum3
3
6
9

Stageout from /scratch (not for /scratch2)

We have a stageout mechanism from /scratch to your HOME
All data you want to have copied into your HOME should be
located under /scratch/${USER}/scc_backup
It will be copied during the night to your HOME
(${HOME}/scc_backup)
You will get a mail about this process to your GWDG-Account
If you want to get the mail to another mail address, put the
address in ${HOME}/scc_backup/.mailaddress

Section 3

Preparing the compilation environment with
“modules”

The modules system

“module avail” find a list of installed modules
“module list” list of currently loaded modules
“module load software/version”
“module purge” unload all modules
“module unload software” unload a single module

Most of the modules just append or prepend a path to PATH
and MANPATH variables.
Or default variables to be found by compiler/configure scripts
at compile time.

Section 4

Compiling Software

Why Compiling?

GWDG cannot install all software required by users (see
modules for what is available)
Scientific software is often only available as source code
Compiling means to create an executable – or a library – from
the source code
Compiling on the target system often yields better performance
Prepackaged software typically requires administrator (root)
privileges ...

å (sudo or su won’t work)
å but you can use Singularity containers!

Getting and Unpacking the Source Code

Source code is usually packaged as “tarball”
å Look for file extensions “tar.gz”, “tar.bz2”, “tgz”
å Naming convention is often {NAME}-{VERSION}.tar.gz

If the tarball is available on the web use “wget” to download
Use “tar” to unpack the tarball

å Use “tar xvzf” for ‘tar.gz”, “tgz”
å Use “tar xvjf” for “tar.bz2”

Recipe: wget and tar

Using wget and tar to prepare the source code

> mkdir $HOME/build
> cd $HOME/build
> wget <tarball URL>
> tar xvzf <name-version>.tar.gz
> cd <name-version>

Compiling (or “Building”) the Software

Standard method: “./configure; make; [make check;
make install]”
Without root privileges: “--prefix” at configuration
For better performance: Use Intel compilers and MKL
For MPI (distributed parallel) applications: Use Intel MPI

About “--prefix”

“--prefix” is used to specify the base diretory for your
software
use “./configure --prefix=DIR” to install directly in DIR.
e.g. “./configure
--prefix=$HOME/software/<name-version>” to install into
a software specific directory.

Recipe: Basic Building and Installing

Building and installing software into a specific directory

> cd $HOME; mkdir software
> cd $HOME/build/<name-version>
> ./configure --prefix=$HOME/software/<name-version>
> make -j 4; make check
> make install
> ln -s $HOME/software/<name-version>/bin/* $HOME/bin
> ln -s $HOME/software/<name-version>/lib/* $HOME/lib
> ln -s $HOME/software/<name-version>/include/* $HOME/include

Compilers

The GNU compilers (gcc, gfortran) are the standard
compilers in Linux
Other compilers are often faster, especially for Fortran code
Recommended for overall performance: Intel compilers (icc,
ifort)
Other compilers available at GWDG: PGI, Open64

å For special cases and users willing to try several approaches for
best performance

Recipe: Using Intel Compilers

Building and installing software with Intel compilers

> module load intel/compiler
> CC=icc; CXX=icpc; FC=ifort; F77=ifort; F90=ifort
> export CC CXX FC F77 F90
> ./configure --prefix=$HOME/software/<name-version>
> make -j 4; make check
> make install

Intel Math Kernel Library (MKL)

A (shared) library is a collection of thematically related
subroutines ready to use in a program
The process of connecting a library to the (compiled) program
is called linking
Intel’s Math Kernel Library provides performance optimized
linear algebra and Fourier transform functions

Recipe: Using the MKL

Example: linking programs to MKL

> module load intel/compiler
> CC=icc; CXX=icpc; FC=ifort; F77=ifort; F90=ifort
> export CC CXX FC F77 F90
> module load intel/mkl
> export CPPFLAGS="-I${MKLROOT}/include -I${MKLROOT}/include/fftw"
> export LDFLAGS="-L${MKLROOT}/lib/intel64 -lmkl_intel_lp64\
> -lmkl_sequential -lmkl_core -lpthread -lm"
> ./configure --prefix=$HOME/software/<name-version>
> make -j 4; make check
> make install

Use Intel MKL Link Line Advisor!
https://software.intel.com/en-us/articles/
intel-mkl-link-line-advisor

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

MPI programs

MPI programs are meant to run distributed across several
computers
They require to be linked to an MPI library
The recommended MPI library at GWDG is Intel MPI
Others available are OpenMPI (tested), MVAPICH, and
MVAPICH2

Recipe: Building MPI programs

Building MPI programs with Intel MPI

> module load intel/compiler
> module load intel/mpi
> CC=mpiicc; CXX=mpiicpc; FC=mpiifort; F77=mpiifort; F90=mpiifort
> export CC CXX FC F77 F90
> module load intel/mkl
> export CPPFLAGS="-I${MKLROOT}/include -I${MKLROOT}/include/fftw"
> export LDFLAGS="-L${MKLROOT}/lib/intel64 -lmkl_intel_lp64\
> -lmkl_sequential -lmkl_core -lpthread -lm"
> ./configure --prefix=$HOME/software/<name-version>
> make -j 4; make check
> make install

Recipe: Building Rmpi for R

Preparation

> module load openmpi/gcc
> export OMPI_MCA_mtl=^psm
> echo $MPI_HOME
/cm/shared/apps/openmpi/gcc/64/1.10.1
> R

R command line

> install.packages("Rmpi", dependencies=TRUE,
configure.args=c("--with-mpi=/cm/shared/apps/openmpi/gcc/64/1.10.1"
))

> install.packages(c("foreach", "doMPI"))

Table of Contents, Part II

1 Connecting to the frontends

2 The most important Linux commands

3 Preparing the compilation environment with “modules”

4 Compiling Software

5 Efficiently Submitting Jobs to the Cluster

6 Getting Help

Section 5

Efficiently Submitting Jobs to the Cluster

Using Slurm

Basic Concepts 1

Cluster A collection of networked computers intended to
provide compute capabilities.

Node One of these computers, also called host or server.
frontend Special node provided to interact with the cluster.

gwdu101, gwdu102, and gwdu103 in our case.
Job Program consisting of one or several parallel tasks.

Partition A group of nodes on which a job is intended to run
Batch System Management system distributing job tasks across

job slots. We are changing from LSF to Slurm.

Submitting Job to the Cluser

srun/sbatch submits information on your job to the batch
system

å What is to be done? (path to your program and required
parameters)

å What are its requirements? (e.g. partition, number of tasks,
maximum runtime)

Slurm matches the job’s requirements against the capabilities
of available job slots
When suitable job slots are found the job is started
Slurm prioritizes the jobs based on a number of factors.

Available Partitions

General purpose meta-partitions:
medium General purpose queue, well suited for large MPI jobs. Up to

1024 tasks, up to 48 hours runtime.
fat For SMP jobs. Up to 512 GB in one host. Otherwise as mpi.

fat+ For extreme memory requirements. Up to 2048GB per host
and 120 hours, max 40 tasks.

Special purpose partitions:
gpu For jobs using GPU acceleration.
int For interactive jobs, i.e. jobs which require a shell or a GUI.

Available Partitions

Meta-partitions just resubmit into:
medium-fmz medium nodes in the FMZ
medium-fas medium nodes at the Faßbeg

fat-fmz fat nodes in the FMZ
fat-fas fat nodes at the Faßbeg

fat-fas+ fat+ nodes in the FMZ
fat-fmz+ fat+ nodes at the Faßbeg

Submitting a job

srun <parameters> <program>

common parameters
-p <partition> partition.
-t <hh:mm:ss> Maximum runtime. If this is exceeded the job

is killed.

Interactive Jobs

srun: Interactive jobs
--x11 Adds X11 (GUI) forwarding. This requires that you con-

nect to the frontend with ssh -Y and your local machine
supports X-Windows.

-p int Use the interactive partition. In int the nodes have no
slot limit. They will take jobs until their load crosses a
specified threshold, so jobs start immediately.

--pty interactive mode

Try it!

Interactive X11 Job

Running Matlab

> ssh -Y gwdu101.gwdg.de
> module load matlab/2015a
> srun --x11 -p medium matlab

The job will be dispatched and as soon as an available node is
found and the Matlab interface will start.
If you have your own license for Matlab then you need to place
your license.lic file in $HOME/.matlab/R2015a_licenses
directory (dependent on the version you are using).

Interactive Console Job

Running R interactively

> ssh gwdu101.gwdg.de
> srun --pty -p medium R

Non interactive Jobs

Problem
if you have big jobs, you queue time will be long
srun needs you to stay logged in
jobs can run for days

Non interactive Jobs

Solution

sbatch <slurm options> jobscript

--mail-type=<TYPE> get mail notifications (type: BEGIN,
END, etc.)

--mail-user=<address> Default: ${USER}@gwdg.de
-o/-e <file> Store job output in file (slurm-

<jobid>.out by default). %J in the file-
name stands for the jobid.

sbatch: Using Job Scripts

A job script is a shell script with a special comment section.
The #SBATCH lines have to come first!

sbatch: Basic job script example

#!/bin/bash
#SBATCH -p medium
#SBATCH -t 10:00
#SBATCH -o job-%J.out

hostname

Submit with:

sbatch <script name>

Download examples

http://wwwuser.gwdg.de/~mboden/pkurs.tar.gz

http://wwwuser.gwdg.de/~mboden/pkurs.tar.gz

LSF → Slurm cheat sheet

Table: Basic submission options

Description LSF Slurm

Submit job bsub <job.sh sbatch job.sh
Scheduler Comment #BSUB -... #SBATCH -...
Queue/Partition -q <queue> -p <partition>
Walltime -W 48:00 -t 2-00:00:00
Stdout -o <outfile> -o <outfile>
Stderr -e <errfile> -e <errfile>
Interactive -ISs /bin/bash srun [...] --pty bash

Basic Concepts 2

Serial job Job consisting of one task using one job slot.
SMP job Job with shared memory parallelization (often realized

with OpenMP), meaning that all tasks need access to
the memory of the same node. Consequently uses
several job slots on the same node.

MPI job Job with distributed memory parallelization, realized
with MPI. Can use several job slots on several nodes
and needs to be started with a helper program, e.g.,
mpirun or srun.

Resource selection

sbatch options for parallel (SMP or MPI) jobs.
-N <min>-<max>,
--nodes=<min>-<max>

Minimum and maximum node
count. You can also specify the
exact number.

-n,--ntasks=<n> Number of tasks (not equally dis-
tributed!)

--tasks-per-node=<n> Tasks per node. If used with -n
it denotes the maximum number of
tasks per node.

-c,--cpu-per-task=<n> CPUs per tasks. Useful for hybrid
jobs

A note on -n vs. -c

Rule of thumb
-c for single node jobs
-n for MPI jobs

Rule of thumb 2
If you are unsure if your program uses MPI, then it does not.

A note on -n vs. -c

Rule of thumb
-c for single node jobs
-n for MPI jobs

Rule of thumb 2
If you are unsure if your program uses MPI, then it does not.

The GWDG Scientific Compute Cluster

sbatch -p
srun -p

fat+
fat

dfaxxx
cores: 24, mem: 512 GB

fat-fas
MemPerCPU=21333

gwdaxxx
cores: 64, mem: 256 GB

fat-fmz
MemPerCPU=4000

medium
gpu

gwddxxx
cores: 20, mem: 64 GB

medium-fmz
MemPerCPU=3200

scratch

ehemalige
Fernmeldezentrale Faßberg

medium-fas
MemPerCPU=5300

dsuxxx
cores: 40, mem: 1536 GB

fat-fas+
MemPerCPU=37500

dmpxxx
cores: 24, mem: 128 GB

gpu
MemPerCPU=5300

dgexxx, dtexxx
cores: 24, mem: 128 GB

scratch2

gwde001
cores: 32, mem: 2048 GB

fat-fmz+
MemPerCPU=64000

Recipe: Submitting an MPI job

Distributing tasks in the medium partition

#SBATCH -p medium
#SBATCH -n 240
#SBATCH -o job-%J.out

module purge
module load intel/compiler intel/mkl intel/mpi namd

srun namd2 +setcpuaffinity apoa1.namd

Recipe: Submitting an MPI job

Distributing tasks in the medium partition

#SBATCH -p medium
#SBATCH -N 10
#SBATCH --ntasks-per-node 24
#SBATCH -o job-%J.out

module purge
module load intel/compiler intel/mkl intel/mpi namd

srun namd2 +setcpuaffinity apoa1.namd

Try it!

Job Disk Space Usage Options

/local Local hard disk of the node. SSD based on almost all
nodes, therefore a very fast option for storing
temporary data. Automatic file deletion. A temporary
directory is created on all nodes at $TMP_LOCAL.

/scratch Shared scratch space, available on most nodes, but
there are two instances (use -C scratch or -C
scratch2). Very fast, no automatic file deletion, but
also no backup! Files may have to be deleted
manually when we run out of space.

$HOME Available everywhere, permanent, with backup.
Personal disk space can be increased. Comparably
slow.

The GWDG Scientific Compute Cluster

sbatch -p
srun -p

fat+
fat

dfaxxx
cores: 24, mem: 512 GB

fat-fas
MemPerCPU=21333

gwdaxxx
cores: 64, mem: 256 GB

fat-fmz
MemPerCPU=4000

medium
gpu

gwddxxx
cores: 20, mem: 64 GB

medium-fmz
MemPerCPU=3200

scratch

ehemalige
Fernmeldezentrale Faßberg

medium-fas
MemPerCPU=5300

dsuxxx
cores: 40, mem: 1536 GB

fat-fas+
MemPerCPU=37500

dmpxxx
cores: 24, mem: 128 GB

gpu
MemPerCPU=5300

dgexxx, dtexxx
cores: 24, mem: 128 GB

scratch2

gwde001
cores: 32, mem: 2048 GB

fat-fmz+
MemPerCPU=64000

Recipe: Using /scratch

#!/bin/bash
#SBATCH -p fat
#SBATCH -n 64
#SBATCH -N 1
#SBATCH -C scratch
#SBATCH -t 1-00:00:00

export g09root="/usr/product/gaussian/g09/d01"
source $g09root/g09/bsd/g09.profile

MYSCRATCH=‘mktemp -d /scratch/${USER}/g09.XXXXXXXX‘
if [${MYSCRATCH} -a -d ${MYSCRATCH}]; then

export GAUSS_SCRDIR=${MYSCRATCH}
else

export GAUSS_SCRDIR=/local
fi

g09 myjob.com myjob.log

if [${MYSCRATCH} -a -d ${MYSCRATCH}]; then
rm -rf ${MYSCRATCH};

fi

Memory management

sbatch options

--mem <size[K|M|G|T] > Memory per node.
--mem-per-cpu <size[K|M|G|T] > Memory per task.

without options:
å each partition has a DefMemPerCPU option
å can be retrieved via scontrol show partition <name>

General remark on resources

Resource limitation
Resources are limited to what you specify
If you exceed the memory you specified, your job is
automatically killed
Your available cores are limited to the amount you specified

Partition selection
only use fat and fat+ if you really need it
you can directly submit to the underlying partitions

Exclusive jobs

#SBATCH --exclusive in a job script denotes an exclusive
job.
An exclusive job uses all job slots (cores) of all its nodes.
Using --exclusive together with -N 1 reserves one complete
node, independent of -n.
You automatically get all the memory. Do not use --mem as
that might limit you available memory.
Disadvantage: Jobs with many nodes may wait longer,
compared to those with exact -n.

LSF → Slurm cheat sheet

Table: Resources

Description LSF Slurm

Processes -n # -n #
One Host -R “span[hosts=1]” -N 1
Process Distribution -R “span[ptile=<x>]” --ntasks-per-node x
Exclusive Node -x --exclusive
Scratch -R scratch[2] -C scratch[2]

Recipe: MPI jobs with --exclusive

Using exclusive jobs to get full nodes

#SBATCH -p medium
#SBATCH -N 4
#SBATCH --ntasks-per-node=4
#SBATCH -o job-%J.out
#SBATCH --exclusive

module purge
module load intel/compiler intel/mpi

srun big_mpi

Recipe: Combine shared memory and MPI

Running hybrid jobs

#SBATCH -p medium
#SBATCH -N 5
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=6
#SBATCH -o job-%J.out

module purge
module load openmpi/gcc

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun hybrid_job

Longer or shorter jobs

The --qos parameter

Default maximum runtime: 2 days
--qos= <qos> can select a QoS
Two extra QoS available:
short for shorter jobs (max. 2h), has higher priority, limited job slots
long longer jobs (max. 7d), limited job slots.

Miscellaneous Slurm Commands

sinfo Info about the system and partitions.
-p <partition>, -t <state>

squeue Show the job queue.
-p <partition>, -u $USER

scontrol show [partition|node|job] <x> where x should be a node
name, jobID or partition name.

ssprio Priority information about pending jobs
sacct Get information about a job after it finished

-j <jobid>
--format=JobID,User,JobName,MaxRSS,Elapsed,Timelimit

sview GUI system and queue view (needs X11 forwarding)

scancel: Terminate your jobs

Two use modes:
1 scancel <jobid>: Kill job with specific jobid.
2 scancel <select options>: Kill all jobs fitting the

selection.
Select option examples:

• -p <partition>
• -u <$USER>
• -s <state>

Using the gpu partition

GPU parameters

--gres:gpu:<n> requests n GPUs of any kind
--gres:gpu:<type>:<n> requests n GPUs of type

CPUs are evenly distributed for every GPU
Available types are:

å gtx980
å gtx1080
å k40

See: sinfo -p gpu --format=%N,%G

Comments

use jobarrays where possible (don’t sbatch in a for loop)
ignore BadConstraints Warning
set a reasonable time limit (not just 2 days)
use the short QOS where applicable

Recipe: Iterators in R

Using the foreach package
l i b r a r y (f o r e a c h)

l s<−f o r e a c h (i =1:100) %do% {
norm=rnorm (100000)
summ=summary (norm)
summ
}

l s

Recipe: Parallelization in R with doMPI

Using doMPI as backend for foreach
l i b r a r y (doMPI)

c l <− s t a r tMP I c l u s t e r ()
r eg i s t e rDoMPI (c l)

l s<−f o r e a c h (i =1:100) %dopar% {
norm=rnorm (100000)
summ=summary (norm)
summ
}

l s

c l o s e C l u s t e r (c l)
mpi . qu i t ()

Recipe: MPI and R

Using R with doMPI in a batch job

#SBATCH -p medium
#SBATCH -n 20
#SBATCH -o job-%J.out

module load openmpi/gcc

srun Rscript "doMPI_script.R"

Task parallelization with GNU parallel

GNU parallel distributes a set of tasks to a set of cores
Requirement: No dependencies and side effects between tasks
(embarrassingly parallel)

Using parallel to run a program with multiple input files

parallel ’cp {} .; g09 {/} {/.}.log’ \
::: $(find /usr/product/gaussian/g09/tests -name *.com -type f)

parallel ’cp {} .; if (eval "g09 {/} {/.}.log");
then echo {/} >> ok; else echo {/} >> failed; fi’ \
::: $(find /usr/product/gaussian/g09/tests -name *.com -type f)

Recipe: GNU parallel in a batch job

Multiple input files with parallel in a batch job

#!/bin/bash

#SBATCH -p medium
#SBATCH --qos=short
#SBATCH -n 20
#SBATCH -N 1
#SBATCH -t 02:00:00
#SBATCH -C scratch|scratch2

module load gaussian
mkdir /scratch/${USER}/g09_ptest
cd /scratch/${USER}/g09_ptest

parallel \
’cp {} .;
if (eval "g09 {/} {/.}.log");

then echo {/} >> ok;
else echo {/} >> failed;

fi’ \
::: $(find /usr/product/gaussian/g09/tests -name *.com -type f)

LSF → Slurm cheat sheet

Table: Basic submission options

Description LSF Slurm

Submit job bsub <job.sh sbatch job.sh
Scheduler Comment #BSUB -... #SBATCH -...
Queue/Partition -q <queue> -p <partition>
Walltime -W 48:00 -t 2-00:00:00
Stdout -o <outfile> -o <outfile>
Stderr -e <errfile> -e <errfile>
Interactive -ISs /bin/bash srun [...] --pty bash

LSF → Slurm cheat sheet

Table: Resources

Description LSF Slurm

Processes -n # -n #
One Host -R “span[hosts=1]” -N 1
Process Distribution -R “span[ptile=<x>]” --ntasks-per-node x
Exclusive Node -x --exclusive
Scratch -R scratch[2] -C scratch[2]

LSF → Slurm cheat sheet

Table: Queues and Paritions

LSF Slurm

-q mpi -p medium
-q mpi-short -p medium --qos=short
-q mpi-long -p medium --qos=long
-q fat -p fat
-q fat-short -p fat --qos=short
-q fat-long -p fat --qos=long
-q fat+ -p fat+
-q int -p int
-q gpu -p gpu

Section 6

Getting Help

Information sources

man pages
Slurm online help

å For example: sbatch --help

GWDG scientific compute cluster documentation
å https://info.gwdg.de/docs/doku.php?id=en:services:

application_services:high_performance_computing:start

GWDG scientific compute cluster user wiki
å https://info.gwdg.de/wiki/doku.php?id=wiki:hpc:start

HPC announce mailing list
å https://listserv.gwdg.de/mailman/listinfo/hpc-announce

https://info.gwdg.de/docs/doku.php?id=en:services:application_services:high_performance_computing:start
https://info.gwdg.de/docs/doku.php?id=en:services:application_services:high_performance_computing:start
https://info.gwdg.de/wiki/doku.php?id=wiki:hpc:start
https://listserv.gwdg.de/mailman/listinfo/hpc-announce

Adding to the Wiki

Everyone with a cluster account can add to the Wiki!
Please inform us of all changes and new articles at
parallel@gwdg.de.
Please add the category “Scientific Computing” to all
contributions regarding the cluster.

Using the GWDG Support Ticket System

Write an email to hpc@gwdg.de
State your user id ($USER)
If you have a problem with jobs, always include:

å Job IDs
å standard output (-o <file>)
å standard output (-e <file>)

If you have a lot of failed jobs send at least two outputs. You
may also list the jobid’s of all failed jobs.
If you don’t mind us looking at your files, please state this in
your request

å You may limit your permission to specific directories or files

Digression: Directory Structure 1

Convention: Executables are stored in “bin”, shared libraries in
“lib” directories
Directories in “$PATH” are searched for binaries, directories in
“$LD_LIBRARY_PATH” for libraries
Two strategies:

1 Put everything directly under $HOME/bin, $HOME/lib
• Easy to setup search paths
• Difficult to remove software packages

2 Put each software into its own subdirectory
• Easy to remove software (with “rm -rf <subdirectory>”)
• Difficult to setup search paths

Digression: Directory Structure 2

Or combine both strategies:
å Put each software in its own subdirectory
å Use “ln -s” to link everything to $HOME/bin and

$HOME/lib, respectively
å Use “export

LD_LIBRARY_PATH=$HOME/lib:$LD_LIBRARY_PATH; export
PATH=$HOME/bin:$PATH” in your shell and scripts

å Use “find $HOME/bin $HOME/lib -xtype l -delete”
after removing software

	Connecting to the frontends
	The most important Linux commands
	Preparing the compilation environment with ``modules''
	Compiling Software
	Efficiently Submitting Jobs to the Cluster
	Getting Help
	Appendix
	Directory Structure

