
Using the GWDG Scienti�c Compute Cluster

by Azat Khuziyakhmetov and Marcus Boden

Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen

Am Fassberg, 37077 Göttingen

Fon: 0551 201-1510 Fax: 0551 201-2150
gwdg@gwdg.de www.gwdg.de

Outline

1 Connecting to the frontends

2 The most important Linux commands

3 Speci�cs of GWDG HPC cluster

4 Preparing the environment with �modules�

5 Compiling Software

6 Using Slurm - Basics

7 Using Slurm - Advanced

8 Getting Help

Section 1

Connecting to the frontends

Network

Frontends

gwdu101 and gwdu102: Cascade Lake Intel Silver 4214
å processor features identical to agqXXX, agtXXX, ampXXX
å new nodes in gpu and medium partitions
å access to /scratch

gwdu103: Broadwell Intel E5-2650 v4
å processor features identical to dfaXXX, dmpXXX, dgeXXX,

dteXXX
å nodes in fat, medium and gpu partitions
å access to /scratch2

Old frontends and HW update

Out of service from mid November 2020
gwdu101: Abu-Dhabi AMD Opteron 6220

å access to /scratch

gwdu102: Sandy-Bridge Intel E5-2670 v1
å processor features identical to gwddXXX
å older nodes in medium-partition
å access to /scratch

Further instructions about the hardware update will be sent via
hpc-announce mailing list.

Accounts activated for HPC are subscribed automatically.

For those who have student accounts: you can subscribe to mailing
list at https://listserv.gwdg.de.

https://listserv.gwdg.de

ssh to the frontends

From the Internet connect to �login.gwdg.de� �rst in similar way as
shown below. Afterwards to the frontend node.

You need SSH keys to connect to the cluster

Linux or OS X:
ssh gwdu101.gwdg.de -l {GWDG-USERID} -i {YOUR-KEY}
Windows: in newer versions you can use native �ssh� in power
shell or download putty.exe from https://www.putty.org

å Run it. Enter �gwdu101.gwdg.de� in hostname

å In the menu SSH->Connection->Auth select your private key
and click open

å Select �Yes� to trust the connection
å Login as: {GWDG-USERID}

The authenticity of host 'gwdu101.gwdg.de (134.76.8.101)' can't...
ECDSA key fingerprint is SHA256:sIJNEepmILeEq/7Zqq4HCtpTM8L98ar...or
ECDSA key fingerprint is 7c:52:2b:17:f8:ba:29:bd:c5:45:d1:1a:9e...or
RSA key fingerprint is b9:f9:46:0f:23:c8:8d:76:b9:83:b9:1b:f6:5...or
ED25519 256 key fingerprint is e3:ef:39:f5:df:4f:c2:e2:c4:d0:28...
Are you sure you want to continue connecting (yes/no)?

h

Section 2

The most important Linux commands

Navigation

ls list the current directory you are in

cd change directory

Listing �les and directories

List the current directory you are in, �ls�
å List the �hidden� �les (beginning with �.�) too, �ls -a�
å All �les in an extended manner, �ls -la� or just type �l�

Let's look at three lines of the output
drwxrwxrwx 3 akhuziy users 4096 4. Apr 17:29 test

-rw-r--r-- 1 akhuziy users 283 24. Sep 2019 Info.txt

lrwxrwxrwx 1 root root 23 Jul 22 12:10 passwd -> /etc/passwd

1 2 3 4 5 6 7 8 9 10

ten permission �ags:

1 directory �ag, �d�: directory, �-�: normal �le, �l�: symlink

2,3,4 read, write, execute permission for User (Owner of the �le)

5,6,7 read, write, execute permission for Group

8,9,10 read, write, execute permission for Others

Changing the language,
what if I don't undestand German

> echo $LANG

de_DE.UTF-8

> rm test

rm: reguläre leere Datei "test" entfernen?

> export LANG=en_US.UTF-8

> rm test

rm: remove regular empty file `test'?

For persistent English language, put it in your �.pro�le�:
echo 'export LANG=en_US.UTF-8' >> ∼/.profile

File operations, processes and �le system

touch create �le / update timestamps

other �le ops cp, rm, mv, mkdir, rmdir, ln

htop display Linux processes

ps display current processes, imp. opt. a [all sessions], u
[owner], x [all], w [wide], ww [even wider]

du display �le space usage, du -hs

df display �lesystem usage, df -h, df -hl

chmod

Files attributes (mode bits) can be changed with chmod

chmod can be used in two ways:
å user friendly form:

u (user) g (group) o (others) a (all)
chmod a+r {file}, chmod g=rwx,o+r {file}

å tell the mode bits:
chmod 744 {file}

chmod (2)

0-7 are 3 bits: 111 → 7

same order, like in dir listing: r,w,x

000 0 → --- no read write or execute allowed

001 1 → --x (last bit is set)

010 2 → -w- (middle bit is set)

011 3 → -wx (last 2 bits are set)

100 4 → r-- (�rst bit is set)

101 5 → r-x (�rst and last bits are set)

110 6 → rw- (�rst and second bits are set)

111 7 → rwx (all 3 bits are set)

chmod 456: owner - read; group - read and execute; others - read
and write

chmod (3)

In sum we have 9 bits now in 3 groups (user, group, others)

But there is a 4th group: SUID/SGID/sticky-bits
SUID/SGID means that the called program will run with the
UID or GID of the owner

å e.g. if the program owns root and has SUID set, you run the
program as root

å chmod u+s {file}, or chmod g+s {file},

chmod a+s {file} would set both
å Since we are normal users on the system, this is very seldom

needed.

sticky-bit is more relevant for you, if you open a directory for
colleagues to write (chmod g=rwx {dir})

å the stick-bit prevents others from deleting �les, they do not
own. (chmod +t {dir})

å e.g. if you create a �le, others cannot delete it, even though
they have write permission to the directory.

Editors, help and Bash

nano, vi/vim, mcedit, joe

For most commands you can read the manual pages, just type �man
{COMMAND}�.
The prompt is a so called �Shell� with built-in commands and
functions. We are using the �bash�. Type �man bash� to get an
impression about the power and �exibility of that shell.

Editors, help and Bash

nano, vi/vim, mcedit, joe

For most commands you can read the manual pages, just type �man
{COMMAND}�.
The prompt is a so called �Shell� with built-in commands and
functions. We are using the �bash�. Type �man bash� to get an
impression about the power and �exibility of that shell.

Environment variables

Where the system gets all the commands we learned today?

Bash searches all paths in the environment variable PATH.

gwdu101:84 15:03:22 ~ > echo -e ${PATH//:/:\\n}

/opt/slurm/bin:

/usr/lib64/qt-3.3/bin:

/usr/local/bin:

/usr/bin:

/usr/local/sbin:

/usr/sbin:

/sbin:

/usr/sbin:

/cm/local/apps/environment-modules/3.2.10/bin

The �rst Shell-Script

For our �rst Shell script we need additional information

�mktemp -d /scratch/${USER}/XXXXXXXX� will create a
unique directory, e.g. /scratch/akhuziy/XymeK4nq and echo it
to stdout

To store an output of a program in a variable, we write
�TEMPDIR=$(mktemp -d /scratch/${USER}/XXXXXXXX)�

Let's write a little Shell script...

The �rst Shell-Script

For our �rst Shell script we need additional information

�mktemp -d /scratch/${USER}/XXXXXXXX� will create a
unique directory, e.g. /scratch/akhuziy/XymeK4nq and echo it
to stdout

To store an output of a program in a variable, we write
�TEMPDIR=$(mktemp -d /scratch/${USER}/XXXXXXXX)�

Let's write a little Shell script...

Section 3

Speci�cs of GWDG HPC cluster

Filesystem

2 �lesystems

1 HOME �lesystem

2 SCRATCH �lesystem

HOME

Stores your permanent data.

There is a quota. It could be extended on request.

Has a backup mechanism.

SCRATCH

Stores your temporal data used for computations or projects.

Fast and large �lesystem.

No Quota, but there are some rules to use it.

Filesystem Quotas

HOME

Quota is set per user basis.

Find it out using Quota command

gwdu101:14 11:55:41 ∼ > Quota

Global Filesystem KBytes: used softlimit hardlimit ...

UNI11 370216 0 0

UNI05 65316256 104857600 419430400

SCRATCH

No Quota per user. However, storage is limited

gwdu101:14 11:55:47 ∼ > df -h /scratch

Filesystem Size Used Avail Use% Mounted on

beegfs_nodev 328T 227T 101T 70% /scratch

Filesystem /local

local �lesystem is NOT shared, but fast.

On some nodes very fast because of SSD.

Use it for temporal data on every node

The size of it rather small

bash-4.2$ df -h /local

Filesystem Size Used Avail Use% Mounted on

/dev/sda6 78G 57M 74G 1% /local

Data archiving

Archive location

Personal archive is located at /usr/users/a/USERNAME

You can get the path from $AHOME variable

Usage

It is recommended to compress directories as tar �les

if you want to archive directory data, call

tar -czvf $AHOME/data.tgz data

The work�ow with /scratch �lesystem

Important

The Scratch �lesystem is NOT a permanent storage

Recommended work�ow

Create directory for your project /scratch/USER-PROJECT

Copy all necessary data there

After completion of your jobs for the project, move the
directory into archive and delete it from Scratch

tar -czvf $AHOME/PROJECT.tar.xz /scratch/USER-PROJECT

rm -rf /scratch/USER-PROJECT

Try it!

Create a project directory for this course:

mkdir /scratch/${USER}-scc-course

Add some �les in it

echo "a" > /scratch/${USER}-scc-course/file1

echo "b" > /scratch/${USER}-scc-course/file2
Compress the folder and send to archive
tar -czvf $AHOME/scc-course.tar.xz /scratch/$USER-scc-course

Data transfer

There are 2 transfer servers that can be used to transfer data from
your machine to HPC.

transfer.gwdg.de

reachable from the Internet

only HOME is mounted

transfer-scc.gwdg.de

reachable only from GÖNET

HOME and /scratch are available

Data transfer. Usage

SCP
works on Linux, macOS, and latest Windows

scp -rp {SRC-DIR} {USER}@transfer.gwdg.de:{DST-DIR}

to transfer back, simply swap the arguments

scp -rp {USER}@transfer.gwdg.de:{SRC-DIR} {DST-DIR}

Filezilla
works on all platforms. GUI. Open source software.

Rsync

works on Linux, macOS

rsync -avvH {SRC-DIR} {USER}@transfer.gwdg.de:{DST-DIR}

to transfer back, simply swap the arguments

rsync -avvH {USER}@transfer.gwdg.de:{SRC-DIR} {DST-DIR}

Screen. Resuming interactive sessions

Screen � is the utility which allows you to resume the sessions.

Usage

screen starts a screen session

screen -S SName starts a named screen session

screen -r SName resume the screen SName

screen -ls list all your available screens

within the screen you work as in usual shell
all screen commands start with Ctrl + a

Ctrl + a d detach from a screen session

Ctrl + a c create a new window

Ctrl + a 0 switch to window 0, or use another
number

Section 4

Preparing the environment with �modules�

The modules system

�module avail� �nd a list of installed modules

�module list� list of currently loaded modules

�module load software/version�

�module purge� unload all modules

�module unload software� unload a single module

Most of the modules just append or prepend a path to PATH
and MANPATH variables.

Or set default variables to be found by compiler/con�gure
scripts at compile time.

Section 5

Compiling Software

Why Compiling?

Compiling means to create an executable � or a library � from
the source code

GWDG cannot install all software required by users (see
modules for what is available)

Scienti�c software is often only available as source code

Compiling on the target system often yields better performance
Prepackaged software typically requires administrator (root)
privileges ...

å (sudo or su won't work)
å but you can use Singularity containers!

Singularity containers

Singularity is the containerization system, just like Docker.
However, we don't provide Docker in HPC for security reasons.

Usage

To load singularity use the modules

module load singularity/3.2.1

You can run either native Singularity or Docker images.

singularity run library://sylabsed/examples/lolcow

With Docker image

singularity run docker://godlovedc/lolcow

Some software packages provide Docker or Singularity images, if
they do it will be easier to run them as containers.

Try it!

Getting and Unpacking the Source Code

Source code is usually packaged as �tarball�
å Look for �le extensions �tar.gz�, �tar.bz2�, �tgz�
å Naming convention is often {NAME}-{VERSION}.tar.gz

If the tarball is available on the web use �wget� to download
Use �tar� to unpack the tarball

å Use �tar xvzf� for `tar.gz�, �tgz�
å Use �tar xvjf� for �tar.bz2�

Recipe: wget and tar

Using wget and tar to prepare the source code

> mkdir $HOME/build

> cd $HOME/build

> wget <tarball URL>

> tar xvzf <name-version>.tar.gz

> cd <name-version>

Compiling (or �Building�) the Software

Standard method: �./configure; make; [make check;

make install]�

Without root privileges: �--prefix� at con�guration

For better performance: Use Intel compilers and MKL

For MPI (distributed parallel) applications: Use Intel MPI

About �--prefix�

�--prefix� is used to specify the base diretory for your
software

use �./configure --prefix=DIR� to install directly in DIR.

e.g. �./configure
--prefix=$HOME/software/<name-version>� to install into
a software speci�c directory.

Recipe: Basic Building and Installing

Building and installing software into a speci�c directory

> cd $HOME; mkdir software

> cd $HOME/build/<name-version>

> ./configure --prefix=$HOME/software/<name-version>

> make -j 4; make check

> make install

> ln -s $HOME/software/<name-version>/bin/* $HOME/bin

> ln -s $HOME/software/<name-version>/lib/* $HOME/lib

> ln -s $HOME/software/<name-version>/include/* $HOME/include

Compilers

The GNU compilers (gcc, gfortran) are the standard
compilers in Linux

Other compilers are often faster, especially for Fortran code

Recommended for overall performance: Intel compilers (icc,
ifort)
Other compilers available at GWDG: PGI, Open64

å For special cases and users willing to try several approaches for
best performance

Recipe: Using Intel Compilers

Building and installing software with Intel compilers

> module load intel/compiler

> CC=icc; CXX=icpc; FC=ifort; F77=ifort; F90=ifort

> export CC CXX FC F77 F90

> ./configure --prefix=$HOME/software/<name-version>

> make -j 4; make check

> make install

Intel Math Kernel Library (MKL)

A (shared) library is a collection of thematically related
subroutines ready to use in a program

The process of connecting a library to the (compiled) program
is called linking

Intel's Math Kernel Library provides performance optimized
linear algebra and Fourier transform functions

Recipe: Using the MKL

Example: linking programs to MKL

> module load intel/compiler

> CC=icc; CXX=icpc; FC=ifort; F77=ifort; F90=ifort

> export CC CXX FC F77 F90

> module load intel/mkl

> export CPPFLAGS="-I${MKLROOT}/include -I${MKLROOT}/include/fftw"

> export LDFLAGS="-L${MKLROOT}/lib/intel64 -lmkl_intel_lp64\

> -lmkl_sequential -lmkl_core -lpthread -lm"

> ./configure --prefix=$HOME/software/<name-version>

> make -j 4; make check

> make install

Use Intel MKL Link Line Advisor!
https://software.intel.com/en-us/articles/

intel-mkl-link-line-advisor

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

MPI programs

MPI programs are meant to run distributed across several
computers

They require to be linked to an MPI library

The recommended MPI library at GWDG is Intel MPI

Others available are OpenMPI (tested), MVAPICH, and
MVAPICH2

Recipe: Building MPI programs

Building MPI programs with Intel MPI

> module load intel/compiler

> module load intel/mpi

> CC=mpiicc; CXX=mpiicpc; FC=mpiifort; F77=mpiifort; F90=mpiifort

> export CC CXX FC F77 F90

> module load intel/mkl

> export CPPFLAGS="-I${MKLROOT}/include -I${MKLROOT}/include/fftw"

> export LDFLAGS="-L${MKLROOT}/lib/intel64 -lmkl_intel_lp64\

> -lmkl_sequential -lmkl_core -lpthread -lm"

> ./configure --prefix=$HOME/software/<name-version>

> make -j 4; make check

> make install

Recipe: Building Rmpi for R

Preparation

> module load openmpi/gcc

> export OMPI_MCA_mtl=^psm

> echo $MPI_HOME

/cm/shared/apps/openmpi/gcc/64/1.10.1

> R

R command line

> install.packages("Rmpi", dependencies=TRUE,

configure.args=c("--with-mpi=/cm/shared/apps/openmpi/gcc/64/1.10.1"

))

> install.packages(c("foreach", "doMPI"))

Table of Contents, Part II

1 Connecting to the frontends

2 The most important Linux commands

3 Speci�cs of GWDG HPC cluster

4 Preparing the environment with �modules�

5 Compiling Software

6 Using Slurm - Basics

7 Using Slurm - Advanced

8 Getting Help

Section 6

Using Slurm - Basics

Getting started with Slurm

How to use the cluster

Cluster divided into frontends and compute nodes

Compute nodes to all calculations

You cannot connect directly to the nodes

You cannot run heavy calculations on the frontends

So how do you use the compute nodes?

Use our scheduler: Slurm!

How to use the cluster

Cluster divided into frontends and compute nodes

Compute nodes to all calculations

You cannot connect directly to the nodes

You cannot run heavy calculations on the frontends

So how do you use the compute nodes?

Use our scheduler: Slurm!

How to use the Cluster

gwdu101 gwdu102 gwdu103

Compute Nodes

Slurm

Your �rst job

A job is a set of instructions for Slurm, including

one or multiple programs to execute

estimated runtime

required resources (CPUs, GPUs, Memory)

and more...

Your �rst job

Use srun to submit a job to slurm

srun <program>

Example:

gwdu101:27 12:53:50 ~ > hostname

gwdu101

gwdu101:27 12:53:53 ~ > srun hostname

gwdd078

gwdu101:27 12:53:56 ~ > srun hostname -f

gwdd078.global.gwdg.cluster

Telling Slurm what to do

srun submits information on your job to Slurm
å What is to be done? (path to your program and required

parameters)
å What are its requirements? (e.g. which nodes, number of

tasks, maximum runtime)

Slurm matches the jobs requirements against the capabilities
of our nodes

When suitable free resources are found the job is started

Slurm prioritizes the jobs based on a number of factors.

Partitions

Di�erent compute nodes have di�erent features

Slurm di�erentiates using Partitions

Available Partitions

General purpose partitions:

medium General purpose queue, well suited for large MPI jobs. Up to
1024 cores.

fat Up to 512 GB in one host.

fat+ For extreme memory requirements. Up to 2048GB per host.
Jobs need memory speci�cations.

Special purpose partitions:

gpu For jobs using GPU acceleration.

int For interactive jobs, i.e. jobs which require a shell or a GUI.

The GWDG Scienti�c Compute Cluster

Basic Concepts 1

Cluster A collection of networked computers intended to
provide compute capabilities.

Node One of these computers, also called host or server.

frontend Special node provided to interact with the cluster.
gwdu101, gwdu102, and gwdu103 in our case.

Job Program consisting of one or several parallel tasks.

Partition A group of nodes on which a job is intended to run

Batch System Management system distributing job tasks across
job slots. We are changing from LSF to Slurm.

Submitting a job

srun <parameters> <program>

common parameters
-p <partition> partition.
-t <hh:mm:ss> Maximum runtime. If this is exceeded the job

is killed.

Interactive Jobs

srun: Interactive jobs
--x11 Adds X11 (GUI) forwarding. This requires that you con-

nect to the frontend with ssh -Y and your local machine
supports X-Windows.

-p int Use the interactive partition. In int the nodes have no
slot limit. They will take jobs until their load crosses a
speci�ed threshold, so jobs start immediately.

--pty interactive mode

Interactive X11 Job

Running Matlab

> ssh -Y gwdu101.gwdg.de

> module load matlab/2015a

> srun --x11 -p medium matlab

The job will be dispatched and as soon as an available node is
found and the Matlab interface will start.

If you have your own license for Matlab then you need to place
your license.lic �le in $HOME/.matlab/R2015a_licenses

directory (dependent on the version you are using).

Interactive Console Job

Running R interactively

> ssh gwdu101.gwdg.de

> srun --pty -p medium R

Try it!

Basic Concepts 2

Serial job Job consisting of one task using one job slot.

SMP job Job with shared memory parallelization (often realized
with OpenMP), meaning that all tasks need access to
the memory of the same node. Consequently uses
several job slots on the same node.

MPI job Job with distributed memory parallelization, realized
with MPI. Can use several job slots on several nodes
and needs to be started with a helper program, e.g.,
mpirun or srun.

Resource selection: CPU

srun options for parallel (SMP or MPI) jobs.
-N <min>-<max>,
--nodes=<min>-<max>

Minimum and maximum node
count. You can also specify the
exact number.

-n,--ntasks=<n> Number of tasks (not equally dis-
tributed!)

--tasks-per-node=<n> Tasks per node. If used with -n

it denotes the maximum number of
tasks per node.

-c,--cpu-per-task=<n> CPUs per tasks. Useful for hybrid
jobs

A note on -n vs. -c

Rule of thumb

-c for single node jobs

-n for MPI jobs

Rule of thumb 2
If you are unsure if your program uses MPI, then it does not.

A note on -n vs. -c

Rule of thumb

-c for single node jobs

-n for MPI jobs

Rule of thumb 2
If you are unsure if your program uses MPI, then it does not.

Try it!

Execises
Try these job con�gurations

1 10 processes

2 10 processes distributed over 3 nodes

3 3 nodes with 3 processes each

4 1 process with 5 cores

5 2 processes per node on 2 nodes with 4 cores per process

use slurm-resources-script to get see the resources of your job

Resource Selection: Memory

srun options

--mem <size[K|M|G|T] > Memory per node.

--mem-per-cpu <size[K|M|G|T] > Memory per task.

without options:
å each partition has a DefMemPerCPU option
å can be retrieved via scontrol show partition <name>

The GWDG Scienti�c Compute Cluster

Try it!

Exercise:
Play with the combination of number of cores or tasks, nodes and
their e�ect on your available memory:

1 1 core and --mem 4G

2 3 tasks and 2 nodes, see e�ect of --mem and --mem-per-cpu

3 20 processes, see distribution of memory over hosts.

Non interactive Jobs

Problem

if you have big jobs, you queue time will be long

srun needs you to stay logged in

jobs can run for days

Non interactive Jobs

Solution

sbatch <slurm options> jobscript

--mail-type=<TYPE> get mail noti�cations (type: BEGIN,
END, etc.)

--mail-user=<address> Default: ${USER}@gwdg.de
-o/-e <�le> Store job output in �le (slurm-

<jobid>.out by default). %J in the �le-
name stands for the jobid.

sbatch: Using Job Scripts

A job script is a shell script with a special comment section.
The #SBATCH lines have to come �rst!

sbatch: Basic job script example

#!/bin/bash

#SBATCH -p medium

#SBATCH -t 10:00

#SBATCH -o job-%J.out

slurm_resources

Submit with:

sbatch <script name>

Jobscripts

A job script is essentially a normal script

usually bash/shell, but can be any scripting language (R,
python, perl)

#SBATCH lines need to be at the top!

you can copy �les, load modules, to scripting in them

for MPI, use srun or mpirun to start your program

Recipe: Submitting an MPI job

Distributing tasks in the medium partition

#SBATCH -p medium

#SBATCH -n 240

#SBATCH -o job-%J.out

module purge

module load intel/compiler intel/mkl intel/mpi namd

srun namd2 +setcpuaffinity apoa1.namd

Recipe: Submitting an MPI job

Distributing tasks in the medium partition

#SBATCH -p medium

#SBATCH -N 10

#SBATCH --ntasks-per-node 24

#SBATCH -o job-%J.out

module purge

module load intel/compiler intel/mkl intel/mpi namd

srun namd2 +setcpuaffinity apoa1.namd

Job Disk Space Usage Options

/local Local hard disk of the node. SSD based on almost all
nodes, therefore a very fast option for storing
temporary data. Automatic �le deletion. A temporary
directory is created on all nodes at $TMP_LOCAL.

/scratch Shared scratch space, available on most nodes, but
there are two instances (use -C scratch or -C
scratch2). Very fast, no automatic �le deletion, but
also no backup! Files may have to be deleted
manually when we run out of space.

$HOME Available everywhere, permanent, with backup.
Personal disk space can be increased. Comparably
slow.

The GWDG Scienti�c Compute Cluster

Recipe: Using /scratch

#!/bin/bash

#SBATCH -p fat

#SBATCH -n 64

#SBATCH -N 1

#SBATCH -C scratch

#SBATCH -t 1-00:00:00

export g09root="/usr/product/gaussian/g09/d01"

source $g09root/g09/bsd/g09.profile

MYSCRATCH=`mktemp -d /scratch/${USER}/g09.XXXXXXXX`

if [${MYSCRATCH} -a -d ${MYSCRATCH}]; then

export GAUSS_SCRDIR=${MYSCRATCH}

else

export GAUSS_SCRDIR=/local

fi

g09 myjob.com myjob.log

if [${MYSCRATCH} -a -d ${MYSCRATCH}]; then

rm -rf ${MYSCRATCH};

fi

Try it!

Exercise
Write a job script, where you

create a scratch directory

copy data from your home �le system to the scratch directory

run a job with the data

copy the results back

delete the scratch directory

If you do not have a program/data to try this on, there is a small
python program in /scratch/scc-course/ and a bit of input data.

Exclusive jobs

#SBATCH --exclusive in a job script denotes an exclusive
job.

An exclusive job uses all job slots (cores) of all its nodes.

Using --exclusive together with -N 1 reserves one complete
node, independent of -n.

You automatically get all the memory. Do not use --mem as
that might limit you available memory.

Disadvantage: You will have to wait until a whole node is free.

The fat+ partition

The fat+ partition contains:

5 nodes with 1.5Tb Memory

1 node with 2Tb Memory

Usage recommendations:

Work your way up. Start in fat and only use fat+ if your jobs
runs out of memory.

Use sacct or profit-hpc, see if your job really is memory
bound

When unsure, ask us!

--mem, --mem-per-cpu or --exclusive is mandatory

You might get angry mails from me, if you waste resources
here

Recipe: MPI jobs with --exclusive

Using exclusive jobs to get full nodes

#SBATCH -p medium

#SBATCH -N 4

#SBATCH --ntasks-per-node=4

#SBATCH -o job-%J.out

#SBATCH --exclusive

module purge

module load intel/compiler intel/mpi

srun big_mpi

Recipe: Combine shared memory and MPI

Running hybrid jobs

#SBATCH -p medium

#SBATCH -N 5

#SBATCH --ntasks-per-node=4

#SBATCH --cpus-per-task=6

#SBATCH -o job-%J.out

module purge

module load openmpi/gcc

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun hybrid_job

Longer or shorter jobs

The --qos parameter

Default maximum runtime: 2 days

--qos= <qos> can select a QoS
Two extra QoS available:
short for shorter jobs (max. 2h), has higher priority, limited job slots
long longer jobs (max. 5d), limited job slots.

But my job is even longer

try parallelizing more

break it down into smaller steps

check, if your software supports checkpoints

check again!

contact us

Miscellaneous Slurm Commands

sinfo Info about the system and partitions.
-p <partition>, -t <state>

squeue Show the job queue.
-p <partition>, --me

scontrol show [partition|node|job] <x> where x should be a node
name, jobID or partition name.

ssprio Priority information about pending jobs

sacct Get information about a job after it �nished
-j <jobid>

--format=JobID,User,JobName,MaxRSS,Elapsed,Timelimit

scancel: Terminate your jobs

Two use modes:
1 scancel <jobid>: Kill job with speci�c jobid.
2 scancel <select options>: Kill all jobs �tting the

selection.
Select option examples:

• -p <partition>
• -u <$USER>
• -s <state>

Using the gpu partition

GPU parameters

-G | --gpus=[type:]<n> requests n GPUs of type

--gpus-per-task=[type:]<n> requests n GPUs of type per task

--gpus-per-node=[type:]<n> requests n GPUs of type per node

CPUs are evenly distributed for every GPU
Available types are:

å gtx980
å gtx1080
å k40

See: sinfo -p gpu --format=%N,%G

Debugging

take a look at yoru output �les, while the job is running:
å tail -f /path/to/output

take a look at the jobs, while it is running
å you can ssh into every node that currently calculates your job
å use htop to see the processor and ram usage

Debugging

Read the extra job information

==

JobID = 4383174

User = mboden, Account = admin

Partition = gpu, Nodelist = dge[001,006]

==

[job output]

============ Job Information ===

Submitted: 2020-04-24T17:35:41

Started: 2020-04-24T17:35:41

Ended: 2020-04-24T17:45:45

Elapsed: 10 min, Limit: 60 min, Difference: 50 min

CPUs: 2, Nodes: 2

============= ProfiT-HPC ===

To generate the ProfiT-HPC text report, run the following command

profit-hpc 4383174

==

Take a look at all the information. Is it as expected?

Debugging

Read your errors!

slurmstepd: error: Detected 1064 oom-kill event(s) in step XXXXXX.0 cgroup.
Some of your processes may have been killed by the cgroup out-of-memory handler.
srun: error: gwda024: task 3: Out Of Memory

Might have something to do with memory!
Have a look at your jobs memory with:
sacct -j JOBID -o jobid,MaxRSS,MaxRSSNode

And for more advanced job statistics, use pro�t-hpc

Section 7

Using Slurm - Advanced

Even more possibilities!

Job Arrays

Job arrays are a way to submit many similar jobs at one.

-a | --array=<n-m> creates a job array with indices n to m.

control jobs via environment variables:
å $SLURM_JOBID
å $SLURM_ARRAY_JOB_ID
å $SLURM_ARRAY_TASK_ID

Job array environment variables

sbatch --noinfo -a 1-3 array_test.sh

gwdu101:30 18:37:19 ~ > cat slurm-4383909_*

SLURM_ARRAY_JOB_ID=4383909

SLURM_ARRAY_TASK_ID=1

SLURM_JOBID=4383910

SLURM_ARRAY_JOB_ID=4383909

SLURM_ARRAY_TASK_ID=2

SLURM_JOBID=4383911

SLURM_ARRAY_JOB_ID=4383909

SLURM_ARRAY_TASK_ID=3

SLURM_JOBID=4383909

Job Dependencies

Wait for a speci�c job to �nish, before the next starts:

-d | --dependency=dependency_definition

where dependency_definition can be:

after:job_id[+time] After the speci�ed jobs start or are cancelled

afterok:job_id After the speci�ed jobs have successfully executed

afternotok:job_id After the speci�ed jobs have terminated in some
failed state

afterany:job_id After the speci�ed jobs have terminated.

Miscellaneous Slurm Options
might be helful?

--wrap= wrap the speci�ed command string in a simple "sh"
shell script. Only for sbatch.

--test-only Check script and give estimate when it would run.

--open-mode=append|truncate append or overwrite job �les

--export=NONE don't export user environment, helpful for
reproducibility.

--signal=B:12@600 Send signal 12 to job when 600 seconds before
time limit. You can catch the signal in the script:

[...]

trap 'cp -af ${TMP_LOCAL}/* /scratch/your_dir/; exit 12' 12

your_job &

wait

General slurm advice

use job arrays where possible (don't sbatch in a for loop)

set a reasonable time limit (not just 2 days)

use the short QOS where applicable

ask us!

Recipe: Iterators in R

Using the foreach package

l i b r a r y (f o r e a c h)

l s<−f o r e a c h (i =1:100) %do% {
norm=rnorm (100000)
summ=summary (norm)
summ
}

l s

Recipe: Parallelization in R with doMPI

Using doMPI as backend for foreach

l i b r a r y (doMPI)

c l <− s t a r tMP I c l u s t e r ()
r eg i s t e rDoMPI (c l)

l s<−f o r e a c h (i =1:100) %dopar% {
norm=rnorm (100000)
summ=summary (norm)
summ
}

l s

c l o s e C l u s t e r (c l)
mpi . qu i t ()

Recipe: MPI and R

Using R with doMPI in a batch job

#SBATCH -p medium

#SBATCH -n 20

#SBATCH -o job-%J.out

module load openmpi/gcc

srun Rscript "doMPI_script.R"

Task parallelization with GNU parallel

GNU parallel distributes a set of tasks to a set of cores

Requirement: No dependencies and side e�ects between tasks
(embarrassingly parallel)

Using parallel to run a program with multiple input �les

parallel 'cp {} .; g09 {/} {/.}.log' \

::: $(find /usr/product/gaussian/g09/tests -name *.com -type f)

parallel 'cp {} .; if (eval "g09 {/} {/.}.log");

then echo {/} >> ok; else echo {/} >> failed; fi' \

::: $(find /usr/product/gaussian/g09/tests -name *.com -type f)

Recipe: GNU parallel in a batch job

Multiple input �les with parallel in a batch job

#!/bin/bash

#SBATCH -p medium

#SBATCH --qos=short

#SBATCH -c 20

#SBATCH -N 1

#SBATCH -t 02:00:00

#SBATCH -C scratch|scratch2

module load gaussian

mkdir /scratch/${USER}/g09_ptest

cd /scratch/${USER}/g09_ptest

parallel \

'cp {} .;

if (eval "g09 {/} {/.}.log");

then echo {/} >> ok;

else echo {/} >> failed;

fi' \

::: $(find /usr/product/gaussian/g09/tests -name *.com -type f)

Section 8

Getting Help

Information sources

man pages
Slurm online help

å For example: sbatch --help

GWDG scienti�c compute cluster documentation
å https://info.gwdg.de/docs/doku.php?id=en:services:

application_services:high_performance_computing:start

GWDG scienti�c compute cluster user wiki
å https://info.gwdg.de/wiki/doku.php?id=wiki:hpc:start

HPC announce mailing list
å https://listserv.gwdg.de/mailman/listinfo/hpc-announce

https://info.gwdg.de/docs/doku.php?id=en:services:application_services:high_performance_computing:start
https://info.gwdg.de/docs/doku.php?id=en:services:application_services:high_performance_computing:start
https://info.gwdg.de/wiki/doku.php?id=wiki:hpc:start
https://listserv.gwdg.de/mailman/listinfo/hpc-announce

Adding to the Wiki

Everyone with a cluster account can add to the Wiki!

Please inform us of all changes and new articles at
parallel@gwdg.de.

Please add the category �Scienti�c Computing� to all
contributions regarding the cluster.

Using the GWDG Support Ticket System

Write an email to hpc@gwdg.de

State your user id ($USER)
If you have a problem with jobs, always include:

å Job IDs
å standard output (-o <file>)
å standard output (-e <file>)

If you have a lot of failed jobs send at least two outputs. You
may also list the jobid's of all failed jobs.
If you don't mind us looking at your �les, please state this in
your request

å You may limit your permission to speci�c directories or �les

Digression: Directory Structure 1

Convention: Executables are stored in �bin�, shared libraries in
�lib� directories

Directories in �$PATH� are searched for binaries, directories in
�$LD_LIBRARY_PATH� for libraries
Two strategies:

1 Put everything directly under $HOME/bin, $HOME/lib
• Easy to setup search paths
• Di�cult to remove software packages

2 Put each software into its own subdirectory
• Easy to remove software (with �rm -rf <subdirectory>�)
• Di�cult to setup search paths

Digression: Directory Structure 2

Or combine both strategies:
å Put each software in its own subdirectory
å Use �ln -s� to link everything to $HOME/bin and

$HOME/lib, respectively
å Use �export

LD_LIBRARY_PATH=$HOME/lib:$LD_LIBRARY_PATH; export

PATH=$HOME/bin:$PATH� in your shell and scripts
å Use �find $HOME/bin $HOME/lib -xtype l -delete�

after removing software

	Connecting to the frontends
	The most important Linux commands
	Specifics of GWDG HPC cluster
	Preparing the environment with ``modules''
	Compiling Software
	Using Slurm - Basics
	Using Slurm - Advanced
	Getting Help
	Appendix
	Directory Structure

