
1| December 2021Deploying Containerized Applications on HPC Production Systems at LRZ

Deploying Containerized Applications on 
HPC Production Systems at LRZ
December 2021 | David Brayford



2De | December 2021ploying Containerized Applications on HPC Production Systems at LRZ

Motivation for using Containers in HPC

Transition workflows from the laptop to supercomputer with minimal effort

“It just works”



3| December 2021Deploying Containerized Applications on HPC Production Systems at LRZ

Workflow Portability in a HPC Container

The ability to transition workflows from laptop to supercomputers with minimal 
effort is increasingly important in the world of heterogeneous Exascale HPC systems

“Increase Productivity”
“Containers are NOT PORTABLE across all systems”



4| December 2021Deploying Containerized Applications on HPC Production Systems at LRZ

Key Challenges for HPC
Containers @ LRZ

Instruction Set Architecture & Hardware

System software

Performance & stability

Container size

Execution patterns

CPU(s), GPU(s), Accelerators, 
Memory, Interconnects

Filesystem, “drivers” (hardware), 
distributed processing (MPI)

Use system optimized libraries 
and software (Licences)

Store large datasets outside 
of the container

IO



5De | December 2021ploying Containerized Applications on HPC Production Systems at LRZ

Deployment with Charliecloud

Mechanism for deploying Container workflows:
1. Create a Docker image from your workflow recipe (Dockerfile)

• Modify the Dockerfile for the HPC system
• Create the Docker image & test

2. Convert to a HPC container (Charliecloud) & test
3. Copy the container to the HPC system & load the HPC container 

module
4. Copy the container to the HPC system & load the HPC container 

module
5. Execute via Slurm



6| December 2021Deploying Containerized Applications on HPC Production Systems at LRZ

TensorFlow Optimized HPC System Workflow SuperMUC-NG
Containerized Applications Run on the HPC Systems at LRZ

Scaling Efficiency on SNG Performance in FLOPs 

Nodes Training 
Time(S) per 
Epoch

Linear 
Time(S) per 
Epoch

Scaling 
Efficiency

4 907.26 907.26 -
8 479.52 453.63 94.6%
16 244.42 226.82 92.8%
32 124.22 113.41 91.3%
64 62.24 56.70 91.1%
128 31.22 28.35 90.8%
256 15.63 14.18 90.7%
512 7.84 7.09 90.4%
768 3.94 3.54 89.9%

Mounted the LRZ file system into the container & used the system version of Intel MPI at runtime
ch-run -b /dss/.:/dss/ -w container_name – python /location/in/container/training_script.py

Nodes Measured 
Performance

petaflops

Percentage of 
Theoretical Peak

4 0.01099 66.17%
8 0.02199 66.21%
16 0.04450 67.01%
32 0.08386 63.14%
64 0.17313 65.17%
128 0.31878 67.60%
256 0.70547 66.39%
512 1.39412 65.60%
768 2.08143 65.29%



7De | December 2021ploying Containerized Applications on HPC Production Systems at LRZ

Enable exAScale for EverYone (EASEY)

Issues:
1. Containerized application crashed due to MPI issues

• Resolved by setting the libfabric parameters
2. Poor performance due to running MPI over TCP

• Resolved by installing OmniPath software inside the container

Outcome:
All the issues with stability and performance were no longer observed 
and the containerized application was able to execute successfully 
on 100’s of nodes with 8000 MPI tasks



8De | December 2021ploying Containerized Applications on HPC Production Systems at LRZ

Software Fuzzing

Issues:
1. The applications IO pattern crashed the parallel file system

• Switched to mounting a more performant directory of the 
parallel file server inside the container

• Switched to mounting the host systems RAM disk inside the 
container for storing temporary files

Outcome:
Using the RAM disk of host system to store the millions of temporary 
files generated by the containerized application fixed the parallel file 
system crashes



9De | December 2021ploying Containerized Applications on HPC Production Systems at LRZ

QuantEX

Issues:
1. Julia installs packages into ~/julia by default. Charliecloud

maps the host ~ directory inside the container
• Resolved by changing the Julia package installation path and using 

the Docker environment instead of the host environment
2. Profiling the Julia application using LIKWID inside the container

• Resolved by mounting the host module system inside the container
Outcome:
Able to execute and profile the containerized QuantEX software on 
the HPC systems at LRZ



10| December 2021Deploying Containerized Applications on HPC Production Systems at LRZ

Fujitsu Arm A64FX
BEAST System Simulation

Host execution time in Julia Container execution time in Julia 
Tot / % measured Time Allocations

Compile + exec 104s / 97.0% 3.79GiB / 98.4%

Exec only 414ms / 44.7% 11.7MiB / 79.2%

Tot / % measured Time Allocations

Compile + exec 101s / 96.9% 3.68GiB / 98.4%

Exec only 457ms / 50.0% 11.7MiB / 79.2%



11| December 2021Deploying Containerized Applications on HPC Production Systems at LRZ

Fujitsu Arm A64FX
BEAST System Simulation

Host LIKWID Profiling Container LIKWID Profiling 
Region Info HWThread 0
RDTSC Runtime [s] 0.433888
call count 1
Event Counter HWThread 0
FP_DP_FIXED_OPS_SPEC PMC0 496
FP_DP_SCALE_OPS_SPEC PMC1 0
L2D_CACHE_REFILL PMC2 220698
L2D_CACHE_WB PMC3 74772
L2D_SWAP_DM PMC4 16940
L2D_CACHE_MIBMCH_PRF PMC5 24380
Metric HWThread 0
Runtime (RDTSC) [s] 0.4339
DP (FP) [MFLOP/s] 0.0011
DP (FP+SVE128) [MFLOP/s] 0.0011
DP (FP+SVE256) [MFLOP/s] 0.0011
DP (FP+SVE512) [MFLOP/s] 0.0011
Memory read bandwidth [MBytes/s] 105.8355
Memory read data volume [GBytes] 0.0459
Memory write bandwidth [MBytes/s] 44.1165
Memory write data volume [GBytes] 0.0191
Memory bandwidth [MBytes/s] 149.9521
Memory data volume [GBytes] 0.0651
Operational intensity (FP) 7.623451e-06
Operational intensity (FP+SVE128) 7.623451e-06
Operational intensity (FP+SVE256) 7.623451e-06
Operational intensity (FP+SVE512) 7.623451e-06

Region Info HWThread 0
RDTSC Runtime [s] 0.477314
call count 1
Event Counter HWThread 0
FP_DP_FIXED_OPS_SPEC PMC0 496
FP_DP_SCALE_OPS_SPEC PMC1 0
L2D_CACHE_REFILL PMC2 883647
L2D_CACHE_WB PMC3 373491
L2D_SWAP_DM PMC4 48554
L2D_CACHE_MIBMCH_PRF PMC5 40377
Metric HWThread 0
Runtime (RDTSC) [s] 0.4773
DP (FP) [MFLOP/s] 0.0010
DP (FP+SVE128) [MFLOP/s] 0.0010
DP (FP+SVE256) [MFLOP/s] 0.0010
DP (FP+SVE512) [MFLOP/s] 0.0010
Memory read bandwidth [MBytes/s] 426.2337
Memory read data volume [GBytes] 0.2034
Memory write bandwidth [MBytes/s] 200.3161
Memory write data volume [GBytes] 0.0956
Memory bandwidth [MBytes/s] 626.5498
Memory data volume [GBytes] 0.2991
Operational intensity (FP) 1.658525e-06
Operational intensity (FP+SVE128) 1.658525e-06
Operational intensity (FP+SVE256) 1.658525e-06
Operational intensity (FP+SVE512) 1.658525e-06

likwid-perfctr -m -g L2CACHE -C 0 julia --project /QXContexts/bin/qxrun.jl -t -d 
/QXContexts/examples/ghz/ghz_5.qx -o /QXContexts/examples/ghz/out_THX_LK_container.jld2



12| December 2021Deploying Containerized Applications on HPC Production Systems at LRZ

Takeaways
Best Practices

• Start with a Dockerfile
• Test the containerized workflows (Docker & HPC container)
• Do as much work on your local system or development VM
• Use software already installed on the HPC system if possible
• Easy to deploy software on different HPC systems at LRZ
• Build the container image for each system
• Easy to use host installed software inside the container
• No big differences in performance



13| December 2021Deploying Containerized Applications on HPC Production Systems at LRZ

Documentation & Contacts 
Demonstration 

Web Page
https://doku.lrz.de/display/PUB
LIC/Charliecloud+at+LRZ

Github repository
• https://github.com/JuliaQX
• https://juliaqx.github.io/QXToo

ls.jl/dev

Publications
• Deploying AI Frameworks on 

Secure HPC Systems with 
Containers

• Deploying scientific al 
networks at petaflop scale 
on secure large scale HPC 
production systems with 
containers

• Deploying Containerized 
QuantEx Quantum 
Simulation Software on HPC 
Systems

Contact
• LinkedIn

https://www.linkedin.com/in/
david-brayford-5900a817

• Twitter 
@david_brayford

https://github.com/JuliaQX
https://juliaqx.github.io/QXTools.jl/dev/
https://www.linkedin.com/in/%20david-brayford-5900a817/

	Slide Number 1
	Motivation for using Containers in HPC
	Workflow Portability in a HPC Container
	Key Challenges for HPC
	Deployment with Charliecloud
	TensorFlow Optimized HPC System Workflow SuperMUC-NG
	Enable exAScale for EverYone (EASEY)
	Software Fuzzing
	QuantEX
	Fujitsu Arm A64FX
	Fujitsu Arm A64FX
	Takeaways
	Documentation & Contacts 

