

Data Lakes Workshop

Julian Kunkel, Hendrik Nolte, Piotr Kasprzak

Agenda

- Welcome
- Short introductory round of all attendees
- Presentation of individual use cases (~10 min per user presentation)
 - CryoEM facility at UMG Tat Cheng (UMG, Göttingen)
 - UMG-MeDIC: Establishing a Medical Research Data Sercive Unit Markus Suhr (UMG, Göttingen)
 - Prediction of neurodevelopmental disorders in young children using multi sensory data analysis Tomas Kulvicius (Uni Göttingen)
- GWDG data lake services and future plans
 - Activities at the GWDG Julian Kunkel
 - Approaches for the GWDG data lake Hendrik Nolte
 - Outlook GWDG Infrastructure Development Piotr Kasprzak

15:30 Break and networking

- Groupwork: similarities of use cases and potential approaches
 - Concluding group discussion
- Conclusions

The workshop is considered to be highly interactive and bring us together as community Please let's make good use of questions and interact and bring us all forward! Motto: Let's build a bridge to the data lake together

Prof. Dr. Julian Kunkel

Personal details 1)

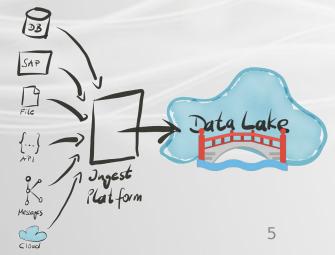
GÖTTINGEN

GEORG-AUGUST-UNIVERSITÄT

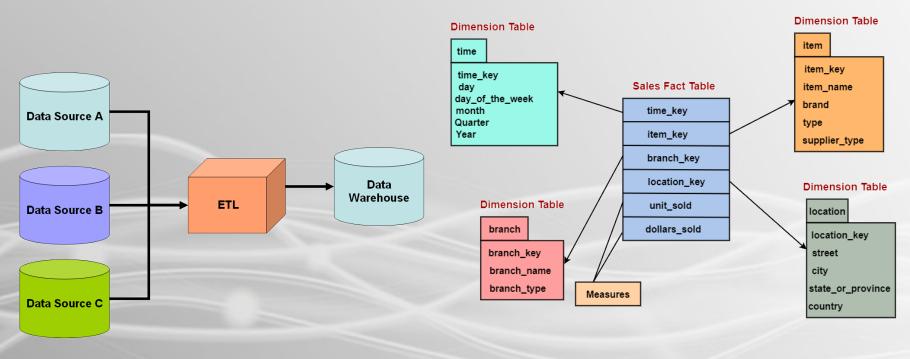
- Since June/21 in Göttingen; Deputy Head GWDG for High-Performance Computing
- PhD Computer Science, University of Hamburg/DKRZ •
- 2018-2021 Lecturer at the University of Reading
- 2) Research focus / field of research
 - Data-driven workflows
 - Parallel file systems
 - Application of machine learning
 - Performance portability
 - Data reduction techniques
- 3) Contact: julian.kunkel@gwdg.de

- Management of cluster systems
- Performance analysis of parallel applications&I/O
- Software engineering of scientific software
- Personalized teaching

Hendrik Nolte



- Personal Details
 - Since November/19 at GWDG in the HPC-Team
 - B.Sc./M.Sc. Physics at University of Göttingen
- Research Focus
 - Data Lakes (in the broadest sense); focus:
 - General scalability
 - Agreement with good scientific practice (e.g. reproducibility)
 - Support of the full lifecycle of a data driven project
 - Processing of sensitive data

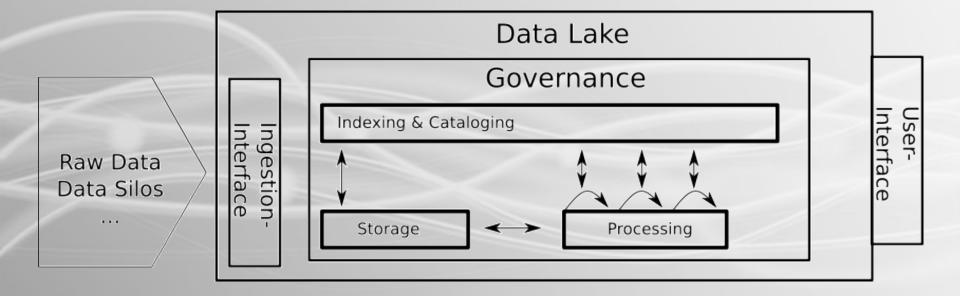


Introduction: Data Lake

- With cheap storage costs, people promote the concept of data lake
 - Combines data from many sources and of any type
 - Allows for conducting future analysis and not miss any opportunity
- Attributes of the data lake
 - Dump everything: all time all data: raw sources and processed data
 - Decide during analysis which data is important, e.g., no "schema" until read
 - **Dive** in anywhere: enable users across multiple business units to
 - Refine, explore and enrich data on their terms
 - Fishing for data, i.e., flexible access
 - Shared infrastructure supports various patterns
 - Usage: Batch, interactive, online, search

Contrast to: Data Warehouse

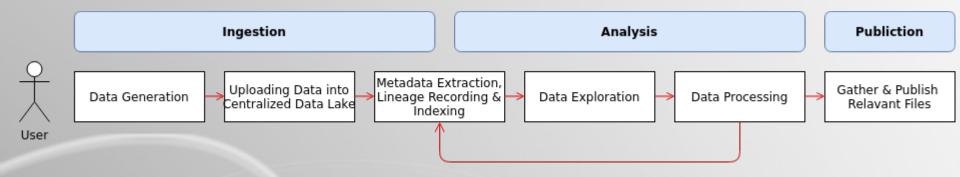
https://en.wikipedia.org/wiki/Data_integration#/media/File:Datawarehouse.png


https://www.javatpoint.com/data-warehouse-what-is-star-schema

GWDG

- Strict structured data
- Motivation: Business Use Case

Data Lake Basic Architecture



7

User Workflow

Multiple users are typically involved

Data Lake Projects at GWDG

- Advising users in data management procedures & procurements
- Deployment of a data and processing infrastructure
 - Ceph based S3 storage
 - Virtual machines for smale-scale processing
 - HPC enabled for large-scale processing
- Development of a data lake solution
 - Combines various tools under one management and control
 - Additional software layers, e.g., for governance
- Secure data processing for highest privacy levels
 - Hardened workflow
- We will organize a follow up meeting for the NHR